重难点解析辽宁省东港市中考数学真题分类(平行线的证明)汇编同步练习练习题(含答案解析)_第1页
重难点解析辽宁省东港市中考数学真题分类(平行线的证明)汇编同步练习练习题(含答案解析)_第2页
重难点解析辽宁省东港市中考数学真题分类(平行线的证明)汇编同步练习练习题(含答案解析)_第3页
重难点解析辽宁省东港市中考数学真题分类(平行线的证明)汇编同步练习练习题(含答案解析)_第4页
重难点解析辽宁省东港市中考数学真题分类(平行线的证明)汇编同步练习练习题(含答案解析)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省东港市中考数学真题分类(平行线的证明)汇编同步练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如图,、是的外角角平分线,若,则的大小为(

)A. B. C. D.2、如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15° B.55° C.65° D.75°3、如图,在ABC中,∠ACB=90°,∠B-∠A=10°,D是AB上一点,将ACD沿CD翻折后得到CED,边CE交AB于点F.若DEF中有两个角相等,则∠ACD的度数为(

)A.15°或20° B.20°或30° C.15°或30° D.15°或25°4、将一副学生用的三角板(一个锐角为30°的直角三角形,一个锐角为45°的直角三角形)如图叠放,则下列4个结论中正确的个数有(

)①∠AOC+∠BOD=90°;②∠AOC=∠BOD;③∠AOC-∠CEA=15°;④如果OB平分∠DOC,则OC平分∠AOBA.0 B.1 C.2 D.35、如图,,将一副直角三角板作如下摆放,,.下列结论:①;②;③;④.其中正确的个数是(

)A.1 B.2 C.3 D.46、给出下列命题,正确的有(

)个①等腰三角形的角平分线、中线和高重合;②等腰三角形两腰上的高相等;③等腰三角形最小边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形A.1个 B.2个 C.3个 D.4个7、如图,把沿线段折叠,使点落在点处;若,,,则的度数为(

)A. B. C. D.8、如图,直线a,b被直线c所截,下列条件中,不能判定a∥b()A.∠2=∠4 B.∠1+∠4=180° C.∠5=∠4 D.∠1=∠3第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,AF,AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,则∠DAF=_____度.2、一副三角板按如图所示叠放在一起,其中点B、D重合,若固定三角形AOB,改变三角板ACD的位置(其中A点位置始终不变),下列条件①∠BAD=30°;②∠BAD=60°;③∠BAD=120°;④∠BAD=150°中,能得到的CD∥AB的有__________.(填序号)3、如图a是长方形纸带,∠DEF=16°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是__.4、如图,将三角形纸片ABC按如图方式折叠:折痕分别为DC和DE,点A与BC边上的点G重合,点B与DG延长线上的点F重合.若满足∠ACB=40°,则∠CEF=_______度.5、已知△ABC,∠A=80°,BF平分外角∠CBD,CF平分外角∠BCE,BG平分∠CBF,CG平分外角∠BCF,则∠G=______°.6、如图,在△ABC中,AD平分∠BAC,如果∠B=80°,∠C=40°,那么∠ADC的度数等于_____.7、将△ABC沿着DE翻折,使点A落到点A′处,A′D、A′E分别与BC交于M、N两点,且DEBC.已知∠A′NM=27°,则∠NEC=_____.三、解答题(7小题,每小题10分,共计70分)1、完成下列推理过程:已知:如图,∠1+∠2=180°,∠3=∠B求证:∠EDG+∠DGC=180°证明:∵∠1+∠2=180°(已知)∠1+∠DFE=180°()∴∠2=()∴EF∥AB()∴∠3=()又∵∠3=∠B(已知)∴∠B=∠ADE()∴DE∥BC()∴∠EDG+∠DGC=180°()2、已知:如图,点E在线段CD上,EA、EB分别平分∠DAB和∠ABC,∠AEB=90°,设AD=x,BC=y,且(x﹣2)2+|y﹣5|=0.(1)求AD和BC的长.(2)试说线段AD与BC有怎样的位置关系?并证明你的结论.(3)你能求出AB的长吗?若能,请写出推理过程,若不能,说明理由.3、已知:如图,EF∥CD,.(1)判断与的位置关系,并说明理由.(2)若平分,平分,且,求的度数.4、如图,BD⊥AC于点D,EF⊥AC于点F,∠AMD=∠AGF,∠1=∠2=35°.(1)求∠GFC的度数;(2)求证:DM∥BC.5、如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.6、如图,已知BD⊥AC,EF⊥AC,垂足分别为D、F,∠1=∠2,请将证明∠ADG=∠C过程填写完整.证明:BD⊥AC,EF⊥AC(已知)∴∠BDC=∠EFC=90°∴BD∥∠2=∠3又∵∠1=∠2(已知)∴∠1=∠3(等量代换)∴DG∥∴∠ADG=∠C7、在△ABC中,∠ADB=100°,∠C=80°,∠BAD=∠DAC,BE平分∠ABC,求∠BED的度数.

-参考答案-一、单选题1、B【解析】【分析】首先根据三角形内角和与∠P得出∠PBC+∠PCB,然后根据角平分线的性质得出∠ABC和∠ACB的外角和,进而得出∠ABC+∠ACB,即可得解.【详解】∵∴∠PBC+∠PCB=180°-∠P=180°-60°=120°∵、是的外角角平分线∴∠DBC+∠ECB=2(∠PBC+∠PCB)=240°∴∠ABC+∠ACB=180°-∠DBC+180°-∠ECB=360°-240°=120°∴∠A=60°故选:B.【考点】此题主要考查角平分线以及三角形内角和的运用,熟练掌握,即可解题.2、D【解析】【分析】根据邻补角定义可得∠ADE=15°,由平行线的性质可得∠A=∠ADE=15°,再根据三角形内角和定理即可求得∠B=75°.【详解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故选D.【考点】本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键.3、C【解析】【分析】由三角形的内角和定理可求解∠A=40°,设∠ACD=x°,则∠CDF=40°+x,∠ADC=180°-40°-x=140°-x,由折叠可知:∠ADC=∠CDE,∠E=∠A=40°,可分三种情况:当∠DFE=∠E=40°时;当∠FDE=∠E=40°时;当∠DFE=∠FDE时,根据∠ADC=∠CDE列方程,解方程可求解x值,即可求解.【详解】解:在△ABC中,∠ACB=90°,∴∠B+∠A=90°,∵∠B-∠A=10°,∴∠A=40°,∠B=50°,设∠ACD=x°,则∠CDF=40°+x,∠ADC=180°-40°-x=140°-x,由折叠可知:∠ADC=∠CDE,∠E=∠A=40°,当∠DFE=∠E=40°时,∵∠FDE+∠DFE+∠E=180°,∴∠FDE=180°-40°-40°=100°,∴140°-x=100°+40°+x,解得x=0(不存在);当∠FDE=∠E=40°时,∴140°-x=40°+40°+x,解得x=30°,即∠ACD=30°;当∠DFE=∠FDE时,∵∠FDE+∠DFE+∠E=180°,∴∠FDE==70°,∴140°-x=70°+40°+x,解得x=15,即∠ACD=15°,综上,∠ACD=15°或30°,故选:C.【考点】本题主要考查直角三角形的性质,等腰三角形的性质,三角形的内角和定理,根据∠ADC=∠CDE分三种情况列方程是解题的关键.4、D【解析】【分析】根据同角的余角相等可得∠AOC=∠BOD;根据三角形的内角和即可得出∠AOC-∠CEA=15°;根据角平分线的定义可判定OC平分∠AOB.【详解】解:∵∠DOC=∠AOB=90°,∴∠DOC-∠BOC=∠AOB-∠COB,即∠BOD=∠AOC,故②正确;如图,AB与OC交于点P,∵∠CPE=∠APO,∠C=45°,∠A=30°,∠CEA+∠CPE+∠C=∠AOC+∠APO+∠A=180°,∴∠AOC-∠CEA=15°.故③正确;如果OB平分∠DOC,则∠DOB=∠BOC=45°,则∠AOC=∠BOC=45°,故OC平分∠AOB,故④正确;由②知:∠AOC=∠BOD,故当∠AOC=∠BOD=45°时,∠AOC+∠BOD=90°成立,否则不成立,故①不正确;综上,②③④正确,共3个,故选:D.【考点】本题考查了余角以及三角形内角和定理,角平分线的定义,熟知余角的性质以及三角形内角和是180°是解答此题的关键.5、D【解析】【分析】由内错角相等,两直线平行可判断①,由邻补角的定义可判断②,如图,延长交于先求解从而可判断③④,于是可得答案.【详解】解:由题意得:故①符合题意;故②符合题意;如图,延长交于故③④符合题意;综上:符合题意的有①②③④故选D【考点】本题考查的是三角形的内角和定理的应用,平行线的判定与性质,三角形外角的性质,等腰直角三角形的两个锐角都为,掌握以上基础知识是解本题的关键.6、B【解析】【详解】解:①等腰三角形的顶角角平分线、底边上的中线和底边上的高重合,故本选项错误;②等腰三角形两腰上的高相等,本选项正确;③等腰三角形最小边不一定底边,故本选项错误;④等边三角形的高、中线、角平分线都相等,本选项正确;⑤等腰三角形可以是钝角三角形,故本选项错误,故选B7、C【解析】【分析】由于折叠,可得三角形全等,运用三角形全等得出,利用平行线的性质可得出则即可求.【详解】解:∵沿线段折叠,使点落在点处,∴,∴,∵,,∴,∵,∴,∴,故选:C.【考点】本题考查了全等三角形的性质及三角形内角和定理、平行线的性质;解题的关键是,理解折叠就是得到全等的三角形,根据全等三角形的对应角相等就可以解决.8、D【解析】【分析】根据同位角相等,两直线平行;同旁内角互补,两直线平行;内错角相等,两直线平行,进行判断即可.【详解】由∠2=∠4或∠1+∠4=180°或∠5=∠4,可得a∥b;由∠1=∠3,不能得到a∥b,故选D.【考点】本题主要考查了平行线的判定,熟记平行线的判定方法是解题的关键.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.二、填空题1、20【解析】【分析】根据角平分线的定义和高的定义结合三角形的内角和定理来解答.【详解】解:∵∠B=36°,∠C=76°,∴∠BAC=180﹣∠B﹣∠C=180°﹣76°﹣36°=68°,又∵AD是∠BAC的平分线,∴∠CAD=68°×=34°,在Rt△AFC中,∠FAC=90﹣∠C=90°﹣76°=14°,于是∠DAF=34°﹣14°=20°.故答案为:20.【考点】本题主要考查了角平分线、三角形高的定义和三角形的内角和定理.2、①④【解析】【分析】分两种情况,根据CD∥AB,利用平行线的性质,即可得到∠BAD的度数.【详解】解:如图所示:当CD∥AB时,∠BAD=∠D=30°;如图所示,当AB∥CD时,∠C=∠BAC=60°,∴∠BAD=60°+90°=150°;∴∠BAD=150°或∠BAD=30°.故答案为:①④.【考点】本题主要考查了平行线的判定,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由直线的平行关系来寻找角的数量关系.3、132°##132度【解析】【分析】先由矩形的性质得出∠BFE=∠DEF=16°,再根据折叠的性质得出∠CFG=180°﹣2∠BFE,由∠CFE=∠CFG﹣∠EFG即可得出答案.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠BFE=∠DEF=16°,∴∠CFE=∠CFG﹣∠EFG=180°﹣2∠BFE﹣∠EFG=180°﹣3×16°=132°,故答案为:132°.【考点】本题考查了翻折变换的性质、矩形的性质、平行线的性质;熟练掌握翻折变换和矩形的性质,弄清各个角之间的关系是解决问题的关键.4、40【解析】【详解】由折叠可得∠EDC=90°,∠BED=∠FED,由角平分线和三角形内角和得∠DEC=70°,再利用三角形外角的性质可得答案.【解答】解:由折叠可得:∠EDF=,,∵∠BDF+∠GDA=180°,∴∠EDF+∠GDC=90°,∵∠ACB=40°,∴∠GCD=40÷2=20°,∴∠DEC=180°﹣90°﹣20°=70°,由折叠可得:∠BED=∠DEF=70°+∠CEF,由三角形外角的性质可得,∠BED=90°+20°=110°,∴70°+∠CEF=110°,即∠CEF=40°.故答案为:40.【考点】本题考查图形的折叠,熟知折叠前后图形的形状和大小相等、得到∠BED=∠DEF并利用三角形内角和是解本题的关键,属于常见题型.5、115【解析】【分析】由三角形外角的性质即三角形的内角和定理可求解∠DBC+∠ECB=260°,再利用角平分线的定义可求解∠FBC+∠FCB=130°,即可得∠GBC+∠GCB=65°,再利用三角形内角和定理可求解.【详解】解:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,∴∠DBC+∠ECB=∠A+∠ACB+∠A+∠ABC,∵∠ACB+∠A+∠ABC=180°,∴∠DBC+∠ECB=∠A+180°=80°+180°=260°,∵BF平分外角∠DBC,CF平分外角∠ECB,∴∠FBC=∠DBC,∠FCB=∠ECB,∴∠FBC+∠FCB=(∠DBC+∠ECB)=130°,∵BG平分∠CBF,CG平分∠BCF,∴∠GBC=∠FBC,∠GCB=∠FCB,∴∠GBC+∠GCB=(∠FBC+∠FCB)=65°,∴∠G=180°-(∠GBC-∠GCB)=180°-65°=115°.故答案为:115.【考点】本题主要考查三角形的内角和定理,三角形外角的性质,角平分线的定义,求解∠FBC+∠FCB=130°是解题的关键.6、110°##110度【解析】【分析】由三角形的内角和可求得∠BAC=60°,再由角平分线的定义得∠BAD=30°,利用三角形的外角性质即可求∠ADC的度数.【详解】解:∵∠B=80°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=60°,∵AD平分∠BAC,∴∠BAD=∠BAC=30°,∴∠ADC=∠B+∠BAD=110°.故答案为:110°.【考点】本题主要考查三角形的外角性质,三角形的内角和定理,角平分线的定义,解答的关键是对相应的知识的掌握.7、126°【解析】【分析】利用平行线的性质求出∠DEN=27°,再利用翻折不变性得到∠AED=∠DEN=27°,再根据平角的性质即可解决问题.【详解】解:∵DE∥BC,∴∠DEN=∠A′NM=27°,由翻折不变性可知:∠AED=∠DEN=27°,∴∠NEC=180°﹣2×27°=126°,故答案为126°.【考点】本题考查翻折变换,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题1、邻补角定义;∠DFE,同角的补角相等;内错角相等,两直线平行;∠ADE,两直线平行,内错角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补【解析】【分析】依据∠1+∠2=180°,∠1+∠DFE=180°,即可得到∠2=∠DFE,由内错角相等,两直线平行证明EF∥AB,则∠3=∠ADE,再根据∠3=∠B,由同位角相等,两直线平行证明DE∥BC,故可根据两直线平行,同旁内角互补,即可得出结论.【详解】∵∠1+∠2=180°(已知)∠1+∠DFE=180°(邻补角定义)∴∠2=∠DFE(同角的补角相等)∴EF∥AB(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代换)∴DE∥BC(同位角相等,两直线平行)∴∠EDG+∠DGC=180°(两直线平行,同旁内角互补)【考点】本题考查了平行线的性质和判定.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.2、(1),;(2),见解析;(3)能,见解析【解析】【分析】(1)根据算术平方根和绝对值的非负性即可得出AD、BC的长度;(2)根据题意证明即可得出结果;(3)延长交直线于,先证明△AEB≌△FEB,然后证明,即可得出结果.【详解】解:(1),,,解得,,即,;(2).理由如下:、分别平分和,,,,,,,;(3)能.理由如下:延长交直线于,如图,,,而,,在△AEB和△FEB中,∴△AEB≌△FEB(AAS),AE=EF.在△ADE和△FCE中,,,.【考点】本题考查了算术平方根和绝对值的非负性,角平分线的定义,平行线的判定,全等三角形的判定与性质,熟知相关性质定理是解本题的关键.3、(1)平行,理由见解析;(2)80°【解析】【分析】(1)根据可得,再由可得由此即可证明;(2)由平行线的性质可得,再由角平分线的定义可得,则,由此即可得到答案.【详解】解:(1).理由:,,又,,;(2),,平分,,∴,平分,.【考点】本题主要考查了平行线的性质与判定,角平分线的定义,解题的关键在于能够熟练掌握平行线的性质与判定条件以及角平分线的定义.4、(1)125°;(2)证明见解析【解析】【分析】(1)由BD⊥AC,EF⊥AC,得到BD∥EF,根据平行线的性质得到∠EFG=∠1=35°,再根据角的和差关系可求∠GFC的度数;(2)根据平行线的性质得到∠2=∠CBD,等量代换得到∠1=∠CBD,根据平行线的判定定理得到GF∥BC,证得MD∥GF,根据平行线的性质即可得到结论.【详解】解:(1)∵BD⊥AC,EF⊥AC,∴BD∥EF,∴∠EFG=∠1=35°,∴∠GFC=90°+35°=125°;(2)∵BD∥EF,∴∠2=∠CBD,∴∠1=∠CBD,∴GF∥BC.∵∠AMD=∠AGF,∴MD∥GF,∴DM∥BC.【考点】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.5、(1)65°;(2)25°.【解析】【分析】(1)先根据直角三角形两锐角互余求出∠ABC=90°﹣∠A=50°,由邻补角定义得出∠CBD=130°.再根据角平分线定义即可求出∠CBE=∠CBD=65°;(2)先根据直角三角形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论