




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
鲁教版(五四制)8年级数学下册试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、我们对于“xn”定义一种运算“L”:L(xn)=nxn﹣1(n是正整数):特别的,规定:L(c)=0(c是常数).这样的运算具有两个运算法则:①L(x+y)=L(x)+L(y);②L(mx)=m•L(x)(m为常数).例如:L(x3+4x2)=3x2+8x.已知y=+(m﹣1)x2+m2x,若方程L(y)=0有两个相等的实数根,则m的值为()A.0 B. C.1 D.22、如图,将△ABC绕点C顺时针旋转α得到△DEC,此时点D落在边AB上,且DE垂直平分BC,则的值是()A. B. C. D.3、若正方形ABCD各边的中点依次为E、F、G、H,则四边形EFGH是()A.平行四边形 B.矩形 C.菱形 D.正方形4、定义运算:.例如:.则方程的根的情况为().A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.以上结论都不对5、如图,在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点B的对应点B′的坐标是()A.(﹣3,﹣1) B.(﹣1,2)C.(﹣9,1)或(9,﹣1) D.(﹣3,﹣1)或(3,1)6、直角三角形中,,三个正方形如图放置,边长分别为,,,已知,,则的值为()A.4 B. C.5 D.67、如图,点P在ΔABC的边AC上,下列条件中不能判定的是()A. B. C. D.8、如图,矩形中,,.点E,G分别在边,上,点F,H在对角线上.若四边形是菱形,则的长是()A.2 B. C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、若,则的值是_______.2、已知是方程的两个实数根,则x1x2=____.3、如图所示的网格是正方形网格,A,B,C,D是网格线交点,AC与BD相交于点O,则△ABO的面积与△CDO的面积的比为_____.4、从,0,1,2这四个数中任取一个数,作为关于x的方程中a的值,则该方程有实数根的概率为_________.5、一元二次方程2x(x﹣1)﹣3=0的一次项系数为_____.6、若代数式有意义,则x的取值范围是_____.7、在矩形ABCD中,AB=6,BC=8,BD⊥DE交AC的延长线于点E,则DE=_____.三、解答题(7小题,每小题10分,共计70分)1、例:解方程解:设,则解得或当时有,解得当时有,解得∴原方程的解为或认真阅读例题的解法,体会解法中蕴含的数学思想,并使用例题的解法及相关知识解方程2、如图,公路旁有两个高度相等的路灯AB、CD,小明上午上学时发现路灯AB在太阳光下的影子恰好落在路牌底部E处,他自己的影子恰好落在路灯CD的底部C处;晚自习放学时,站在上午同一个地方,发现在路灯CD的灯光下自己的影子恰好落在E处.(1)在图中画出小明的位置(用线段FG表示).(2)若上午上学时,高1米的木棒的影子为2米,小明身高为1.5米,他距离路牌底部E恰好2米,求路灯高.3、四边形ABCD是正方形,E、F分别是DC和B的延长线上点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌ABF;(2)若BC=4,DE=1,求△ABF的面积.4、解方程:(1)4x(2x+1)=3(2x+1);(2)﹣3x2+4x+4=0.5、如图,△ABC中,∠C=90°.(1)尺规作图:作边BC的垂直平分线,与边BC,AB分别交于点D和点E;(保留作图痕迹,不要求写作法)(2)若点E是边AB的中点,AC=BE,求证:△ACE是等边三角形.6、如图,已知菱形ABCD中,分别以C、D为圆心,大于CD的长为半径作弧,两弧分别相交于M、N两点,直线MN交CD于点F,交对角线AC于点E,连接BE、DE.(1)求证:BE=CE;(2)若∠ABC=72°,求∠ABE的度数.7、在正方形ABCD中,点E是CD边上任意一点.连接AE,过点B作BF⊥AE于F.交AD于H.(1)如图1,过点D作DG⊥AE于G,求证:△AFB≌△DGA;(2)如图2,点E为CD的中点,连接DF,求证:FH+FE=DF;(3)如图3,AB=1,连接EH,点P为EH的中点,在点E从点D运动到点C的过程中,点P随之运动,请直接写出点P运动的路径长.-参考答案-一、单选题1、B【解析】【分析】利用新运算的运算法则得到x2+2(m﹣1)x+m2=0,再根据判别式的意义得到Δ=4(m﹣1)2﹣4m2=0,然后解关于m的方程即可.【详解】解:∵方程L(y)=0有两个相等的实数根,∴L(x3)+L[(m﹣1)x2]+L(m2x)=0,∴x2+2(m﹣1)x+m2=0,△=4(m﹣1)2﹣4m2=0,∴m=.故选:B.【点睛】本题考查了一元二次方程根的判别式,将新定义转化为一元二次方程是解题的关键.2、B【解析】【分析】根据旋转的性质和线段垂直平分线的性质证明,对应边成比例即可解决问题.【详解】解:如图,设与交于点,由旋转可知:,,,,垂直平分,,,,,,,,,,.故选:B.【点睛】本题考查了相似三角形的判定与性质,线段垂直平分线的性质,旋转的性质,解题的关键是得到.3、D【解析】【分析】画出图形,连接,先根据正方形的性质可得,再根据三角形中位线定理可得,从而可得,同样的方法可得,然后根据正方形的判定即可得出答案.【详解】解:如图,连接,四边形是正方形,,点分别是的中点,,,同理可得:,四边形是正方形,故选:D.【点睛】本题考查了正方形的判定与性质、三角形中位线定理,熟练掌握正方形的判定与性质是解题关键.4、A【解析】【分析】根据新定义列出一元二次方程,根据一元二次方程根的判别式求解即可.【详解】解:∵∴,即整理得,方程有两个不相等的实数根.故选A【点睛】本题考查了一元二次方程根的判别式,理解根的判别式对应的根的三种情况是解题的关键.当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.5、D【解析】【分析】利用以原点为位似中心,相似比为k,位似图形对应点的坐标的比等于k或-k,把B点的横纵坐标分别乘以或-即可得到点B′的坐标.【详解】解:∵以原点O为位似中心,相似比为,把△ABO缩小,∴点B(-9,-3)的对应点B′的坐标是(-3,-1)或(3,1).故选:D.【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.6、C【解析】【分析】根据△CEF∽△OME∽△PFN,得,代入即可.【详解】解:如图,先标注顶点,直角三角形ABC中,∠C=90°,放置边长分别为a,b,c的正方形,且a=2,b=3,∴△CEF∽△OME∽△PFN,∴,∵MO=2,PN=3,EF=c,∴OE=c-2,PF=C-3,∴,解得:c=5或0,经检验0不符合题意舍去,∴c=5,故选:C.【点睛】本题主要考查了正方形的性质,相似三角形的判定与性质,一元二次方程的解法等知识,证明△OME∽△PFN是解题的关键.7、D【解析】【分析】根据相似三角形的判定定理(①有两角分别相等的两三角形相似,②有两边的比相等,并且它们的夹角也相等的两三角形相似)逐个进行判断即可.【详解】解:A、∵∠A=∠A,,∴△ABP∽△ACB,故本选项不符合题意;B、∵∠A=∠A,∴△ABP∽△ACB,故本选项不符合题意;C、∵∠A=∠A,,∴△ABP∽△ACB,故本选项不符合题意;D、∵∠A=∠A,,∴无法判断△ABP∽△ACB,故本选项符合题意;故选:D.【点睛】本题考查了相似的三角形的判定定理的应用,能正确运用判定定理进行推理是解此题的关键.8、C【解析】【分析】连接EG交AC于O,根据菱形和矩形的性质证明△CEO≌△AGO,推出AO=CO,由勾股定理求出AC得到AO,再证明△AOG∽△ADC,得到,代入数值即可求出AG.【详解】解:连接EG交AC于O,∵四边形是菱形,∴EG⊥FH,OE=OG,∵四边形是矩形,∴∠B=∠D=90°,,∴∠ACB=∠CAD,∴△CEO≌△AGO,∴AO=CO,∵,∴,∵∠AOG=∠D=90°,∠OAG=∠CAD,∴△AOG∽△ADC,∴,∴,∴AG=故选:C.【点睛】此题考查了菱形的性质,矩形的性质,勾股定理,全等三角形的判定及性质,相似三角形的判定及性质,是图形类的综合题,熟练掌握各知识点是解题的关键.二、填空题1、##【解析】【分析】利用设法进行计算即可解答.【详解】解:,,设,,,,,故答案为:.【点睛】本题考查了比例的性质,解题的关键是熟练掌握设法进行求解.2、-2【解析】【分析】直接利用根与系数的关系得到x1x2的值.【详解】解:∵x1、x2为一元二次方程x2-3x-2=0的两根,∴x1x2=-2,故答案为:-2.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1•x2=.3、1:4【解析】【分析】证明△AOB∽△COD,只需求出其相似比的平方即得两三角形面积比.【详解】解:如图,设小方格的边长为1,∵△ABE、△DCF分别是边长为1和2的等腰直角三角形,∴∠ABE=∠CDF=45°,,,∵BE//DF,∴∠EBO=∠FDO,∴∠ABO=∠CDO,又∠AOB=∠COD,∴△ABO∽△CDO,∴S△ABO:S△CDO=(AB:CD)2,∴,故答案为:1∶4.【点睛】本题考查相似三角形面积比与相似比的关系,关键是判断两三角形相似,确定其相似比.4、##0.75【解析】【分析】根据一元二次方程的定义,可得,根据一元二次方程的判别式的意义得到,可得,然后根据概率公式求解.【详解】解:∵当且,一元二次方程有实数根∴且当a=0时,方程有实数根从,0,1,2这四个数中任取一个数,符合条件的结果有,0所得方程有实数根的概率为故答案为:【点睛】本题考查了列举法求概率,一元二次方程的定义,一元二次方程根的判别式,掌握以上知识是解题的关键.5、-2【解析】【分析】观察发现原方程为一元二次方程的一般式,找出所对应的a,b及c,其中b的值即为一次项的系数.【详解】解:化简2x(x-1)-3=0得,2x2-2x-3=0,∴a=2,b=-2,c=-3,∴一次项的系数为-2.故答案为:-2.【点睛】本题要求学生熟练掌握一元二次方程的一般式:ax2+bx+c=0,(a为二次项系数,b为一次项系数,c为常数项,a,b,c为常数且a≠0).学生找一次项时容易把负号忽略,认为一次项的系数为1,做题时应注意不要掉了符号.6、﹣3≤x≤且x≠.【解析】【分析】根据二次根式的性质,被开方数大于等于0;分母中有字母,分母不为0.【详解】解:若代数式有意义,必有,解①得解②移项得两边平方得整理得解得③∴解集为﹣3≤x≤且x≠.故答案为:﹣3≤x≤且x≠.【点睛】本题考查了二次根式的概念:式子(a≥0)叫二次根式,(a≥0)是一个非负数.注意:二次根式中的被开方数必须是非负数,否则二次根式无意义;当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于0.7、【解析】【分析】由勾股定理可求的长,由矩形的性质可得,由面积法可求的长,通过证明,即可求解.【详解】解:如图:过点作于,,,,四边形是矩形,,,,,,∵,,∴,,,,,故答案为:.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,勾股定理,熟知相似三角形的性质与判定条件是解题的关键.三、解答题1、,【解析】【分析】利用题中给出的方法先把(2x+1)3当成一个整体t来计算,求出t的值,再解一元二次方程.【详解】解:设,则,解得或,当时有,解得,当时有,解得,∴原方程的解为,.【点睛】本题考查了一元二次方程-换元法,看懂题例理解换元法是关键.换元法的一般步骤有:设元、换元、解元、还原几步.2、(1)见解析(2)路灯高3.75米【解析】【分析】(1)作出太阳光线,过点作的平行线,与的交点即为小明的位置;(2)易得小明的影长,利用可得路灯的长度.(1)解:如图,FG就是所求作的线段.(2)上午上学时,高1米的木棒的影子为2米,,,,,,,,解得,路灯高3.75米.【点睛】综合考查了中心投影和平行投影的运用,注意平行投影的光线是平行的;用到的知识点为:在相同时间段,垂直于地面的物高与影长是成比例的;两三角形相似,对应边成比例.3、(1)证明见解答;(2)2.【解析】【分析】(1)根据全等三角形的判定定理即可得出答案;(2)根据正方形的性质求出AB的长度,根据全等三角形的性质求出BF的长度,即可确定三角形ABF的面积.(1)解:∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABF=90°,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS);(2)∵DE=1,BC=4,∴BF=1,AB=4,∴S△ABF=×1×4=2,【点睛】本题考查了正方形的性质和全等三角形的判定,解题的关键是要牢记正方形的性质和全等三角形的判定定理.4、(1)(2)【解析】【分析】(1)因式分解法解一元二次方程即可;(2)根据公式法解一元二次方程即可(1)(2)【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.5、(1)见解析(2)见解析【解析】【分析】(1)根据题意作出线段BC的垂直平分线即可;(2)根据直角三角形的性质和等边三角形的判定定理即可得到结论.(1)解:如图所示,直线DE即为所求;,(2)证明:∵∠ACB=90°,点E是边AB的中点,∴AE=BE=CE=AB,∵AC=BE,∴AC=AE=CE,∴△ACE是等边三角形.【点睛】本题考查了作图-基本作图,等边三角形的判定,熟练掌握等边三角形的判定定理是解题的关键.6、(1)见解析(2)∠ABE=18°【解析】【分析】(1)根据四边形ABCD是菱形,得出CB=CD,∠ACB=∠ACD,再证△ECB≌△ECD(SAS),得出BE=DE,根据MN垂直平分线段CD,得出EC=ED即可;(2)根据等腰三角形内角和可求∠BAC=∠BCA=(180°﹣72°)=54°,根据EB=EC,求出∠EBC=∠ECB=54°即可.(1)证明:∵四边形ABCD是菱形,∴CB=CD,∠ACB=∠ACD,在△ECB和△ECD中,,∴△ECB≌△ECD(SAS),∴BE=DE,由作图可知,MN垂直平分线段CD,∴EC=ED,∴BE=CE.(2)解:∵BA=BC,∠ABC=72°,∴∠BAC=∠BCA=(180°﹣72°)=54°,∵EB=EC,∴∠EBC=∠ECB=54°,∴∠ABE=∠ABC﹣∠EBC=18°.【点睛】本题考查菱形的性质,全等三角形的判定与性质,线段垂直平分线的判定与性质,等腰三角形的性质,三角形内角和定理,正确理解题意是解题关键.7、(1)证明见解析(2)证明见解析(3)【解析】【分析】(1)由正方形的性质得AB=AD,∠BAD=90°,证明∠BAF=∠ADG,然后由AAS证△AFB≌△DGA即可;(2)如图2,过点D作DK⊥AE于K,DJ⊥BF交BF的延长线于J,先证△ABH≌△DAE(ASA),得AH=DE,再证△DJH≌△DKE(AAS),得DJ=DK,JH=EK,则四边形DKFJ是正方形,得FK=FJ=DK=DJ,则DF=,FJ,进而得出结论;(3)如图3,取AD的中点Q,连接PQ,延长QP交CD于R,过点P作PT⊥CD于T,PK⊥AD于K,设PT=b,由(2)得△ABH≌△DAE(ASA),则AH=DE,再由直角三角形斜边上的中线性质得PD=PH=PE,然后由等腰三角形的性质得DH=2DK=2b,DE=2DT,则AH=DE=1﹣2b,证出PK=QK,最后证点P在线段QR上运动,进而由等腰直角三角形的性质得QR=DQ=.(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°∵DG⊥AE,BF⊥AE∴∠AFB=∠DGA=90°∵∠FAB+∠DAG=90°,∠DAG+∠ADG=90°∴∠BAF=∠ADG在△AFB和△D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第12课 战后科学技术革命说课稿-2025-2026学年高中历史华东师大版上海第六分册-华东师大版上海2007
- 西安科大版·2017教学设计-2025-2026学年中职中职专业课统计类73 财经商贸大类
- 第一单元 主题案例二 学习家庭园艺技巧-高中劳动与综合实践单元教学设计
- 2024年七年级生物下册 4.7.1 分析人类活动对生态环境的影响说课稿 (新版)新人教版
- 曲靖市中小学生科技素养科学课程 第10课.《螺旋桨飞机》教学设计
- 2025年中考化学试题分类汇编:常见的酸和碱(第1期)解析版
- 2025年城市绿化考试题库及答案
- 22.2.5 一元二次方程根与系数的关系 说课稿+说课稿 2024-2025学年华东师大版九年级数学上册
- 22.1 一元二次方程说课稿2024-2025学年华东师大版数学九年级上册
- 2025年全国中级养老护理员职业技能A证考试题库(含答案)
- 室外栏杆底座施工方案
- 《人力资源管理》全套教学课件
- 人教版六年级数学上册教案全册
- 新人教版一年级数学上册全册教学课件(2024年秋季新教材)
- 老年高血压指南解读
- 基础烫发知识课件
- 纯电动汽车制动能量回收控制策略研究及仿真分析
- 化工公司bluesign认证资料准备清单20201201
- 骨科患者的疼痛管理
- 【公司财务风险管理问题分析国内外文献综述3000字】
- 仁爱版英语九年级(上)全册课文翻译(互译版)
评论
0/150
提交评论