




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学上册《全等三角形》重点解析考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,在梯形中,,,,那么下列结论不正确的是()A. B.C. D.2、下列语句中正确的是()A.斜边和一锐角对应相等的两个直角三角形全等B.有两边对应相等的两个直角三角形全等C.有两个角对应相等的两个直角三角形全等D.有一直角边和一锐角对应相等的两个直角三角形全等3、如图,锐角△ABC的两条高BD、CE相交于点O,且CE=BD,若∠CBD=20°,则∠A的度数为()A.20° B.40° C.60° D.70°4、如图,在中,,,垂足分别为D,E,,交于点H,已知,,则的长是(
)A.1 B. C.2 D.5、如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15° B.55° C.65° D.75°第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,点,,在同一直线上,,,,,若线段与线段的长度之比为,则线段与线段的长度之比为______.2、如图,若△ABC≌△A1B1C1,且∠A=110°,∠B=40°,则∠C1=______°.3、在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是_____.4、如图,已知△ABC≌△DBE,∠A=36°,∠B=40°,则∠AED的度数为_____.5、已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF=_____.三、解答题(5小题,每小题10分,共计50分)1、如图,已知,.求证:.2、在中,BE,CD为的角平分线,BE,CD交于点F.(1)求证:;(2)已知.①如图1,若,,求CE的长;②如图2,若,求的大小.3、如图,已知:AO=BO,OC=OD.求证:∠ADC=∠BCD.4、方格纸上有2个图形,你能沿着格线把每一个图形都分成完全相同的两个部分吗?请画出分割线.5、如图,已知中,,是内一点,且,试说明的理由.-参考答案-一、单选题1、A【解析】【分析】A、根据三角形的三边关系即可得出A不正确;B、通过等腰梯形的性质结合全等三角形的判定与性质即可得出∠ADB=90°,从而得出B正确;C、由梯形的性质得出AB∥CD,结合角的计算即可得出∠ABC=60°,即C正确;D、由平行线的性质结合等腰三角形的性质即可得出∠DAC=∠CAB,即D正确.综上即可得出结论.【详解】A、∵AD=DC,∴AC<AD+DC=2CD,故A不正确;B、∵四边形ABCD是等腰梯形,∴∠ABC=∠BAD,在△ABC和△BAD中,,∴△ABC≌△BAD(SAS),∴∠BAC=∠ABD,∵AB∥CD,∴∠CDB=∠ABD,∠ABC+∠DCB=180°,∵DC=CB,∴∠CDB=∠CBD=∠ABD=∠BAC,∵∠ACB=90°,∴∠CDB=∠CBD=∠ABD=30°,∴∠ABC=∠ABD+∠CBD=60°,B正确,C、∵AB∥CD,∴∠DCA=∠CAB,∵AD=DC,∴∠DAC=∠DCA=∠CAB,C正确.D、∵△DAB≌△CBA,∴∠ADB=∠BCA.∵AC⊥BC,∴∠ADB=∠BCA=90°,∴DB⊥AD,D正确;故选:A.【考点】本题考查了梯形的性质、平行线的性质、等腰三角形的性质以及全等三角形的判定与性质,解题的关键是逐项分析四个选项的正误.本题属于中档题,稍显繁琐,但好在该题为选择题,只需由三角形的三边关系得出A不正确即可.2、A【解析】【分析】根据全等三角形的判定定理,用排除法以每一个选项进行分析从而确定最终答案.【详解】A、正确,利用AAS来判定全等;B、不正确,两边的位置不确定,不一定全等;C、不正确,两个三角形不一定全等;D、不正确,有一直角边和一锐角对应相等不一定能推出两直角三角形全等,没有相关判定方法对应.故选A【考点】本题考核知识点:全等三角形的判定.解题关键点:熟记全等三角形的相关判定.3、B【解析】【分析】由BD、CE是高,可得∠BDC=∠CEB=90°,可求∠BCD=70°,可证Rt△BEC≌Rt△CDB(HL),得出∠BCD=∠CBE=70°即可.【详解】解:∵BD、CE是高,∠CBD=20°,∴∠BDC=∠CEB=90°,∴∠BCD=180°﹣90°﹣20°=70°,在Rt△BEC和Rt△CDB中,,∴Rt△BEC≌Rt△CDB(HL),∴∠BCD=∠CBE=70°,∴∠A=180°﹣70°﹣70°=40°.故选:B.【考点】本题考查三角形高的定义,三角形全等判定与性质,三角形内角和公式,掌握三角形高的定义,三角形全等判定与性质,三角形内角和公式是解题关键.4、A【解析】【分析】利用“八字形”图形推出∠EAH=∠ECB,根据,EH=3,求出AE=4,证明△AEH≌△CEB,得到AE=CE=4,即可求出CH.【详解】解:∵,,∴∠CEB=,∵∠AHE=∠CHD,∴∠EAH=∠ECB∵,EH=3,∴AE=4,∵∠AEH=∠CEB,∠EAH=∠ECB,EH=BE,∴△AEH≌△CEB,∴AE=CE=4,∴CH=CE-EH=4-3=1,故选A.【考点】此题考查了全等三角形的判定及性质,“八字形”图形的应用,熟记全等三角形的判定定理是解题的关键.5、D【解析】【分析】根据邻补角定义可得∠ADE=15°,由平行线的性质可得∠A=∠ADE=15°,再根据三角形内角和定理即可求得∠B=75°.【详解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故选D.【考点】本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键.二、填空题1、或【解析】【分析】根据平行线的性质得到CE⊥BC,根据余角的性质得到∠ACB=∠E,根据全等三角形的性质得到CD=AB,BC=CE,等量代换即可得到结论.【详解】解:∵AB∥EC,AB⊥BC,∴CE⊥BC,∴∠B=∠DCE=90°,∵AC⊥DE,∴∠ACD+∠CDE=∠CDE+∠E=90°,∴∠ACB=∠E,∵AC=DE,∴△ABC≌△DCE(AAS),∴CD=AB,BC=CE,∵线段AB与线段CE的长度之比为5:8,∴CD:BC=5:8,∴线段BD与线段DC的长度之比为3:5,故答案为:3:5.【考点】本题考查了平行线的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.2、30【解析】【分析】本题实际上是全等三角形的性质以及根据三角形内角和等于180°来求角的度数.【详解】∵△ABC≌△A1B1C1,∴∠C1=∠C,又∵∠C=180°-∠A-∠B=180°-110°-40°=30°,∴∠C1=∠C=30°.故答案为30.【考点】本题考查了全等三角形的性质;解答时,除必备的知识外,还应将条件和所求联系起来,即将所求的角与已知角通过全等及三角形内角之间的关系联系起来.3、4:3【解析】【分析】根据角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【详解】∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.4、76°或76度【解析】【分析】根据全等三角形的性质得到∠A=∠D=36°,根据三角形的外角的性质即可得出答案.【详解】解:∵△ABC≌△DBE,∴∠A=∠D=36°,∵∠AED是△BDE的外角,∴∠AED=∠B+∠D=40°+36°=76°.故答案为:76°.【考点】本题考查了全等三角形的性质及三角形外角的性质,掌握全等三角形的对应角相等是解题的关键.5、4.【解析】【分析】过点D作DM⊥OB,垂足为M,则DM=DE=2,在Rt△OEF中,利用三角形内角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所对的直角边等于斜边的一半可求出DF的长,此题得解.【详解】过点D作DM⊥OB,垂足为M,如图所示.∵OC是∠AOB的平分线,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案为4.【考点】本题考查了角平分线的性质、三角形内角和定理以及含30度角的直角三角形,利用角平分线的性质及30°角所对的直角边等于斜边的一半,求出DF的长是解题的关键.三、解答题1、见详解.【解析】【分析】根据SSS定理推出△ADB≌△BCA即可证明.【详解】证明:在△ADB和△BCA中,∴△ADB≌△BCA(SSS),∴.【考点】本题考查了全等三角形的性质和判定,能正确进行推理证明全等是解此题的关键.2、(1)证明见解析;(2)2.5;(3)100°.【解析】【分析】(1)由三角形内角和定理和角平分线得出的度数,再由三角形内角和定理可求出的度数,(2)在BC上取一点G使BG=BD,构造(SAS),再证明,即可得,由此求出答案;(3)延长BA到P,使AP=FC,构造(SAS),得PC=BC,,再由三角形内角和可求,,进而可得.【详解】解:(1)、分别是与的角平分线,,,,(2)如解(2)图,在BC上取一点G使BG=BD,由(1)得,,,∴,在与中,,∴(SAS)∴,∴,∴,∴在与中,,,,,;∵,,∴(3)如解(3)图,延长BA到P,使AP=FC,,∴,在与中,,∴(SAS)∴,,∴,又∵,∴,又∵,∴,∴,,∴,【考点】本题考查的是角平分线的性质、全等三角形的判定与性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键.3、见解析【解析】【分析】利用“边角边”证明△AOD和△BOC全等,根据全等三角形对应角相等可得∠ADO=∠BCO,根据等边对等角可得∠ODC=∠OCD,然后相减整理即可得证.【详解】证明:在△AOD和△BOC中,,
∴△AOD≌△BOC(SAS),∴∠ADO=∠BCO,∵OC=OD,∴∠ODC=∠OCD,∴∠ADO﹣∠ODC=∠BCO﹣∠OCD,即∠ADC=∠BCD.【考点】本题考点:全等三角形的判定与性质.4、见解析【解析】【分析】观察第一个图,图中共有20个小方格,要分成完全相同两部分,则每个有10个小格,则可按如图所示,沿A→B→C→D分割;第二个图同理沿E→F→G→H→P→Q分割即可.【详解】解:如图所示,第一个图,图中共有20个小方格,要分成完全相同两部分,则每个有10个小格,则可按如图所示,沿A→B→C→D分割;第二个图同理沿E→F→G→H→P→Q
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市更新项目旧厂房拆除及新厂房转让协议
- 离职员工专利权保护及竞业限制合同范本
- 临床药学副高考试题及答案2025版
- 物业管理公司租赁经营权及智慧社区设施建设合同
- 网络直播平台签约主播合作推广协议范本
- 上市公司简单股份转让与业绩对赌协议
- 互联网医疗平台研发团队与医疗科技公司合作协议
- 生态农业园猪肉摊位租赁与有机食品认证合同
- 仓储物流租赁合同补充协议:租金上涨及调整机制
- 《科普危化品运输安全知识与应急处理合同》
- 党章党规党纪知识测试题及答案
- 高压三柱塞泵行业深度研究分析报告(2024-2030版)
- 呼吸衰竭个案护理
- 2025年森林植被恢复费森林抚育项目方案投标文件(技术方案)
- 癫痫性精神病护理查房
- Q-GDW10250-2025 输变电工程建设安全文明施工规程
- 高低压配电施工方案
- 2025至2030年中国软包电池行业市场供需规模及投资前景预测报告
- 2025年新高考2卷(新课标Ⅱ卷)语文试卷
- AI大模型赋能数据治理解决方案
- 河海大学2019-2020学年第一学期《概率论与数理统计》试卷(A卷)
评论
0/150
提交评论