




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市九龙坡区7年级数学下册第四章三角形专项测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、根据下列已知条件,能画出唯一的的是()A., B.,,C.,, D.,,2、下列所给的各组线段,能组成三角形的是:()A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,133、如图,直线EF经过AC的中点O,交AB于点E,交CD于点F,下列不能使△AOE≌△COF的条件为()A.∠A=∠C B.AB∥CD C.AE=CF D.OE=OF4、如图,为了估算河的宽度,我们可以在河的对岸选定一个目标点,再在河的这一边选定点和,使,并在垂线上取两点、,使,再作出的垂线,使点、、在同一条直线上,因此证得,进而可得,即测得的长就是的长,则的理论依据是()A. B. C. D.5、如图,已知△ABC,下面甲、乙、丙、丁四个三角形中,与△ABC全等的是()A. B.C. D.6、如图,在中,已知点,,分别为,,的中点,且,则的面积是()A. B.1 C.5 D.7、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是()A.两点确定一条直线B.两点之间,线段最短C.三角形具有稳定性D.三角形的任意两边之和大于第三边8、如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是()A. B. C. D.9、如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,OA=15米,OB=10米,A、B间的距离不可能是()A.5米 B.10米 C.15米 D.20米10、下列条件中,能判定△ABC≌△DEF的是()A.∠A=∠D,∠B=∠E,AC=DF B.∠A=∠E,AB=EF,∠B=∠DC.∠A=∠D,∠B=∠E,∠C=∠F D.AB=DE,BC=EF,∠A=∠E第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、等腰三角形的一条边长为4cm,另一条边长为6cm,则它的周长是________.2、如图,在中,,点D,E在边BC上,,若,,则CE的长为______.3、如图,∠1=∠2,加上条件_____,可以得到△ADB≌△ADC(SAS).4、如图,AB=CD,若要判定△ABD≌△CDB,则需要添加的一个条件是____________.5、如图,点B、E、C、F在一条直线上,AB=DE,BE=CF,请添加一个条件______,使△ABC≌△DEF.6、已知a,b,c是的三边长,满足,c为奇数,则______.7、已知三角形的三边分别为n,5,7,则n的范围是_____.8、如图,点,在直线上,且,且,过,,分别作,,,若,,,则的面积是______.9、如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l于点C,BD⊥l于点D,若AC=5,BD=3,则CD=_______.10、如图,方格纸中是9个完全相同的正方形,则∠1+∠2的值为_____.三、解答题(6小题,每小题10分,共计60分)1、如图,直角坐标系中,点B(a,0),点C(0,b),点A在第一象限.若a,b满足(a−t)2+|b−t|=0(t>0).(1)证明:OB=OC;(2)如图1,连接AB,过A作AD⊥AB交y轴于D,在射线AD上截取AE=AB,连接CE,F是CE的中点,连接AF,OA,当点A在第一象限内运动(AD不过点C)时,证明:∠OAF的大小不变;(3)如图2,B′与B关于y轴对称,M在线段BC上,N在CB′的延长线上,且BM=NB′,连接MN交x轴于点T,过T作TQ⊥MN交y轴于点Q,当t=2时,求点Q的坐标.2、如图,在和中,,,,.连接,交于点,连接.(Ⅰ)求证:;(Ⅱ)求的大小;(Ⅲ)求证:3、如图,点C、F在BE上,BF=EC,AB∥DE,且∠A=∠D,求证:AC=DF4、在解决线段数量关系问题中,如果条件中有角平分线,经常采用下面构造全等三角形的解决思路,如:在图1中,若C是∠MON的平分线OP上一点,点A在OM上,此时,在ON上截取OB=OA,连接BC,根据三角形全等判定(SAS),容易构造出全等三角形OBC和OAC,参考上面的方法,解答下列问题,如图2,在非等边ABC中,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,且AD、CE交于点F.(1)求∠AFC的度数;(2)求证:AC=AE+CD.5、如图,点A,B,C,D在同一条直线上,CEDF,EC=BD,AC=FD.求证:AE=FB.6、在中,,,点D是直线AC上一动点,连接BD并延长至点E,使.过点E作于点F.(1)如图1,当点D在线段AC上(点D不与点A和点C重合)时,此时DF与DC的数量关系是______.(2)如图2,当点D在线段AC的延长线上时,依题意补全图形,并证明:.(3)当点D在线段CA的延长线上时,直接用等式表示线段AD,AF,EF之间的数量关系是______.-参考答案-一、单选题1、C【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【详解】解:A.∠C=90°,AB=6,不符合全等三角形的判定方法,即不能画出唯一三角形,故本选项不符合题意;B.,,,不符合全等三角形的判定定理,不能画出唯一的三角形,故本选项不符合题意;C.,,,符合全等三角形的判定定理ASA,能画出唯一的三角形,故本选项符合题意;D.3+4<8,不符合三角形的三边关系定理,不能画出三角形,故本选项不符合题意;故选:C.【点睛】此题主要考查了全等三角形的判定以及三角形三边关系,正确把握全等三角形的判定方法是解题关键.2、D【分析】根据三角形三边关系定理,判断选择即可.【详解】∵2+11=13,∴A不符合题意;∵5+7=12,∴B不符合题意;∵5+5=10<11,∴C不符合题意;∵5+12=17>13,∴D符合题意;故选D.【点睛】本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.3、C【分析】根据全等三角形的判定逐项判断即可.【详解】解:∵直线EF经过AC的中点O,∴OA=OC,A、∵OA=OC,∠A=∠C,∠AOE=∠COF,∴△AOE≌△COF(ASA),此选项不符合题意;B、∵AB∥CD,∴∠A=∠C,又∵OA=OC,∠AOE=∠COF,∴△AOE≌△COF(ASA),此选项不符合题意;C、由OA=OC,AE=CF,∠AOE=∠COF,不能证明△AOE≌△COF,符合题意;D、∵OA=OC,∠AOE=∠COF,OE=OF,∴△AOE≌△COF(SAS),此选项不符合题意,故选:C.【点睛】本题考查全等三角形的判定、对顶角相等,熟练掌握全等三角形的判定条件是解答的关键.4、C【分析】根据题意及全等三角形的判定定理可直接进行求解.【详解】解:∵,,∴,在和中,,∴(ASA),∴;故选C.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.5、B【分析】根据三角形全等的判定定理(定理和定理)即可得.【详解】解:A、中,长为的两边的夹角等于,则此项不满足定理,与不全等,不符题意;B、此项满足定理,与全等,符合题意;C、中,长为的两边的夹角等于,则此项不满足定理,与不全等,不符题意;D、中,角度为的夹边长为,则此项不满足定理,与不全等,不符题意;故选:B.【点睛】本题考查了三角形全等的判定定理,熟练掌握三角形全等的判定方法是解题关键.6、B【分析】根据三角形面积公式由点为的中点得到,同理得到,则,然后再由点为的中点得到.【详解】解:点为的中点,,点为的中点,,,点为的中点,.故选:.【点睛】本题考查了三角形的中线与面积的关系,解题的关键是掌握是三角形的中线把三角形的面积平均分成两半.7、C【分析】根据三角形具有稳定性进行求解即可.【详解】解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,故选C.【点睛】本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.8、C【分析】根据题意,可知仍可辨认的有1条边和2个角,且边为两角的夹边,即可根据来画一个完全一样的三角形【详解】根据题意可得,已知一边和两个角仍保留,且边为两角的夹边,根据两个三角形对应的两角及其夹边相等,两个三角形全等,即故选C【点睛】本题考查了三角形全等的性质与判定,掌握三角形的判定方法是解题的关键.9、A【分析】根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.【详解】解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B间的距离在5和25之间,∴A、B间的距离不可能是5米;故选:A.【点睛】本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.10、A【分析】根据全等三角形的判定方法,对各选项分别判断即可得解.【详解】解:A、∠A=∠D,∠B=∠E,AC=DF,根据AAS可以判定,故此选项符合题意;B、∠A=∠E,AB=EF,∠B=∠D,AB与EF不是对应边,不能判定,故此选项不符合题意;C、∠A=∠D,∠B=∠E,∠C=∠F,没有边对应相等,不可以判定,故此选项不符合题意;D、AB=DE,BC=EF,∠A=∠E,有两边对应相等,一对角不是对应角,不可以判定,故此选项不符合题意;故选A.【点睛】本题考查了全等三角形的判定方法,一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题1、16cm或14cm【分析】根据题意分腰为6cm和底为6cm两种情况,分别求出即可.【详解】解:①当腰为6cm时,它的周长为6+6+4=16(cm);②当底为6cm时,它的周长为6+4+4=14(cm);故答案为:16cm或14cm.【点睛】本题考查了等腰三角形的性质的应用,注意:等腰三角形的两腰相等,注意分类讨论.2、5【分析】由题意易得,然后可证,则有,进而问题可求解.【详解】解:∵,∴,∵,∴(ASA),∴,∵,,∴,∴;故答案为5.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.3、AB=AC(答案不唯一)【分析】根据全等三角形的判定定理SAS证得△ADB≌△ADC.【详解】解:加上条件,AB=AC,可以得到△ADB≌△ADC(SAS).在△ADB与△ADC中,,∴△ADB≌△ADC(SAS),故答案为:AB=AC(答案不唯一).【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4、∠1=∠2(或填AD=CB)【分析】根据题意知,在△ABD与△CDB中,AB=CD,BD=DB,所以由三角形判定定理SAS可以推知,只需添加∠1=∠2即可.由三角形判定定理SSS可以推知,只需要添加AD=CB即可.【详解】解:∵在△ABD与△CDB中,AB=CD,BD=DB,∴添加∠1=∠2时,可以根据SAS判定△ABD≌△CDB,添加AD=CB时,可以根据SSS判定△ABD≌△CDB,,故答案为∠1=∠2(或填AD=CB).【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5、(答案不唯一)【分析】添加条件AC=DF,即可利用SSS证明△ABC≌△DEF.【详解】解:添加条件AC=DF,∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),故答案为:AC=DF(答案不唯一).【点睛】本题主要考查了全等三角形的判定,解题的关键在于能够熟练掌握全等三角形的判定条件.6、7【分析】绝对值与平方的取值均0,可知,,可得a、b的值,根据三角形三边关系求出c的取值范围,进而得到c的值.【详解】解:,由三角形三边关系可得为奇数故答案为:7.【点睛】本题考查了绝对值、平方的非负性,三角形的三边关系等知识点.解题的关键是确定所求边长的取值范围.7、2<n<12【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求第三边长的范围.【详解】解:由三角形三边关系定理得:7﹣5<n<7+5,即2<n<12故n的范围是2<n<12.故答案为:2<n<12.【点睛】本题考查的是三角形三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.8、15【分析】根据AAS证明△EFA≌△AGB,△BGC≌△CHD,再根据全等三角形的性质以及三角形的面积公式求解即可.【详解】解:(1)∵EF⊥FG,BG⊥FG,∴∠EFA=∠AGB=90°,∴∠AEF+∠EAF=90°,又∵AE⊥AB,即∠EAB=90°,∴∠BAG+∠EAF=90°,∴∠AEF=∠BAG,在△AEC和△CDB中,,∴△EFA≌△AGB(AAS);同理可证△BGC≌△CHD(AAS),∴AG=EF=6,CG=DH=4,∴S△ABC=ACBG=(AG+GC)BG=(6+4)3=15.故答案为:15.【点睛】本题考查了三角形全等的性质和判定,解题的关键是灵活运用所学知识解决问题.9、2【分析】首先根据同角的余角相等得到∠A=∠BOD,然后利用AAS证明△ACO≌△ODB,根据全等三角形对应边相等得出AC=OD=5,OC=BD=3,根据线段之间的数量关系即可求出CD的长度.【详解】解:∵AC⊥l于点C,BD⊥l于点D,∴∠ACO=∠ODB=90°,∵∠AOB=90°,∴∠A=90°﹣∠AOC=∠BOD,在△ACO和△ODB中,,∴△ACO≌△ODB(AAS),∴AC=OD=5,OC=BD=3,∴CD=OD﹣OC=5﹣3=2,故答案为:2.【点睛】此题考查了全等三角形的性质和判定,同角的余角相等,解题的关键是根据题意证明△ACO≌△ODB.10、【分析】如图(见解析),先根据三角形全等的判定定理证出,再根据全等三角形的性质可得,由此即可得出答案.【详解】解:如图,在和中,,,,,故答案为:.【点睛】本题考查了三角形全等的判定定理与性质等知识点,正确找出两个全等三角形是解题关键.三、解答题1、(1)见解析(2)见解析(3)点坐标为(,).【分析】(1)利用绝对值以及平方的非负性求出B、C的坐标,利用坐标表示边长,即可证明结论.(2)延长至点,使,连接、,利用条件先证明,再根据全等三角形性质,进一步证明,最后综合条件得到为等腰直角三角形,进而得到∠OAF为,是个定值,即可证得结论成立.(3)先连接、、、,过作交轴于,利用平行关系和边相等证明,然后通过全等三角形性质进一步证明,再根据角与角之间的关系,求出,得到为等腰直角三角形,最后利用等腰三角形的性质,即可求出点坐标.【详解】(1)证明:(a−t)2+|b−t|=0(t>0),,即,点B坐标为(a,0),点C坐标为(0,b),,故结论得证.(2)解:如图所示:延长至点,使,连接、,是的中点,,在和中,,,,,,,,,,,,,,,在与中,.,,,,为等腰直角三角形.,故∠OAF的大小不变.(3)解:连接、、、,过作交轴于.如下图所示:和关于轴对称,在轴上.,,,,.,,,,在和中,.,又,,垂直平分,,在和中,.,.,故.,.为等腰直角三角形..故点坐标为(,).【点睛】本题主要是考查了对称点的坐标关系以及利用坐标求解几何图形,熟练掌握垂直平分线、平行线以及等腰三角形、全等三角形的判定和性质,是解决本题的关系.2、(Ⅰ)见解析;(Ⅱ);(Ⅲ)见解析【分析】(I)先证明△AOC≌△BOD(SAS),即可证明AC=BD;(II)如图由于△AOC≌△BOD,所以∠OAC=∠OBD,再根据三角形外角等于与它不相邻的两个内角之和得出∠AOB=∠AMB=36°(III)如图,作两条垂线,再通过面积相等证明两条高也就是垂线相等,从而证明OM在∠AMD角平分线上,所以∠OMP=∠OMQ【详解】解:(Ⅰ)∵,∴,即.∵,,∴≌.∴.(Ⅱ)如图,由(Ⅰ)可得.∵,∴.∴.(Ⅲ)如图,过分别作,,垂足分别为点,.∵≌,∴.∴.∵,∴.∴点在的平分线上.∴.【点睛】本题考查全等三角形判定及其性质,三角形外角定理、角平分线的性质与判定,掌握这些是本题解题关键,同时也要会添加辅助线.3、见解析【分析】由BF=EC可得BC=EF,由可得,再结合∠A=∠D可证△≌△,最后根据全等三角形的性质即可证明结论.【详解】证明:∵已知,即,等式性质∵,两直线平行,内错角相等在△和△中,∴△≌△全等三角形对应边相等.【点睛】本题考查了平行线的性质、全等三角形的判定和性质等知识点.灵活运用全等三角形的判定定理成为解答本题的关键.4、(1)120°;(2)见详解.【分析】(1)根据题意在AC上截取AG=AE,连接FG,进而根据角平分线的性质
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 充电桩安装工程质量管理方案
- 钢结构施工用水电管理方案
- 钢结构项目质量控制措施
- 2025年文化办公设备行业研究报告及未来行业发展趋势预测
- 智算中心负载测试与性能评估方案
- 2025年炒菜机烹饪锅行业研究报告及未来行业发展趋势预测
- 2025年牛油果行业研究报告及未来行业发展趋势预测
- 2025年建筑材料生产专用机械制造行业研究报告及未来行业发展趋势预测
- 高速公路绿化施工方案
- 2025年物料搬运设备制造行业研究报告及未来行业发展趋势预测
- 汽车维修业务接待(中职)PPT完整全套教学课件
- 综采工作面液压支架安装回撤工理论考核试题及答案
- 初中高中英语所有单词集合带音标
- 投标报价说明范本
- 露天矿山危险源辨识(汇总)
- 放射科质控汇报
- 医院超声科管理制度汇编
- Q3D学习体会课件
- 眼科学教学课件:绪论
- 中医运动养生 中医养生学课件
- GB/T 5563-2013橡胶和塑料软管及软管组合件静液压试验方法
评论
0/150
提交评论