版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中考数学总复习《圆》考试历年机考真题集考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,在中,,,,以点为圆心,为半径的圆与所在直线的位置关系是(
)A.相交 B.相离 C.相切 D.无法判断2、如图,点A,B,C,D,E是⊙O上5个点,若AB=AO=2,将弧CD沿弦CD翻折,使其恰好经过点O,此时,图中阴影部分恰好形成一个“钻戒型”的轴对称图形,则“钻戒型”(阴影部分)的面积为()A. B.4π﹣3 C.4π﹣4 D.3、如图,在△ABC中,AG平分∠CAB,使用尺规作射线CD,与AG交于点E,下列判断正确的是(
)
A.AG平分CDB.C.点E是△ABC的内心D.点E到点A,B,C的距离相等4、如图,在△ABC中,∠ACB=90°,AC=BC,AB=4cm,CD是中线,点E、F同时从点D出发,以相同的速度分别沿DC、DB方向移动,当点E到达点C时,运动停止,直线AE分别与CF、BC相交于G、H,则在点E、F移动过程中,点G移动路线的长度为(
)A.2 B.π C.2π D.π5、如图,是的直径,弦于点,,,则的长为(
)A.4 B.5 C.8 D.16第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、数学课上,老师让学生用尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为小明这种作法中判断∠ACB是直角的依据是_____.2、如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为_____.3、如图,四边形是的外切四边形,且,,则四边形的周长为__________.4、如图,四边形ABCD为⊙O的内接正四边形,△AEF为⊙O的内接正三角形,连接DF.若DF恰好是同圆的一个内接正多边形的一边,则这个正多边形的边数为_____.5、如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点出发,沿表面爬到的中点处,则最短路线长为__________.三、解答题(5小题,每小题10分,共计50分)1、如图,内接于,,,则的直径等于多少?2、如图,已知等边△ABC内接于☉O,BD为内接正十二边形的一边,CD=5cm,求☉O的半径R.3、如图,是的高,为的中点.试说明点在以点为圆心的同一个圆上.4、如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF和AD.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为2,∠EAC=60°,求AD的长.5、如图,已知∠MAN,按下列要求补全图形.(要求利用没有刻度的直尺和圆规作图,不写作法,保留作图痕迹)①在射线AN上取点O,以点O为圆心,以OA为半径作⊙O分别交AM、AN于点C、B;②在∠MAN的内部作射线AD交⊙O于点D,使射线AD上的各点到∠MAN的两边距离相等,请根据所作图形解答下列问题;(1)连接OD,则OD与AM的位置关系是,理论依据是;(2)若点E在射线AM上,且DE⊥AM于点E,请判断直线DE与⊙O的位置关系;(3)已知⊙O的直径AB=6cm,当弧BD的长度为cm时,四边形OACD为菱形.-参考答案-一、单选题1、A【解析】【分析】过点C作CD⊥AB于点D,由题意易得AB=5,然后可得,进而根据直线与圆的位置关系可求解.【详解】解:过点C作CD⊥AB于点D,如图所示:∵,,,∴,根据等积法可得,∴,∵以点为圆心,为半径的圆,∴该圆的半径为,∵,∴圆与AB所在的直线的位置关系为相交,故选A.【考点】本题主要考查直线与圆的位置关系,熟练掌握直线与圆的位置关系是解题的关键.2、A【解析】【分析】连接CD、OE,根据题意证明四边形OCED是菱形,然后分别求出扇形OCD和菱形OCED以及△AOB的面积,最后利用割补法求解即可.【详解】解:连接CD、OE,由题意可知OC=OD=CE=ED,弧=弧,∴S扇形ECD=S扇形OCD,四边形OCED是菱形,∴OE垂直平分CD,由圆周角定理可知∠COD=∠CED=120°,∴CD=2×2×=2,∵AB=OA=OB=2,∴△AOB是等边三角形,∴S△AOB=×2××2=,∴S阴影=2S扇形OCD﹣2S菱形OCED+S△AOB=2(2×2)+=2(π﹣2)+=π﹣3,故选:A.【考点】此题考查了菱形的性质和判定,等边三角形的性质,圆周角定理,求解圆中阴影面面积等知识,解题的关键是根据题意做出辅助线,利用割补法求解.3、C【解析】【分析】根据作法可得CD平分∠ACB,结合题意即可求解.【详解】解:由作法得CD平分∠ACB,
∵AG平分∠CAB,∴E点为△ABC的内心故答案为:C.【考点】此题考查了尺规作图(角平分线),以及三角形角平分线的性质,熟练掌握相关基本性质是解题的关键.4、D【解析】【分析】【详解】解:如图,∵CA=CB,∠ACB=90°,AD=DB,∴CD⊥AB,∴∠ADE=∠CDF=90°,CD=AD=DB,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴∠DAE=∠DCF,∵∠AED=∠CEG,∴∠ADE=∠CGE=90°,∴A、C、G、D四点共圆,∴点G的运动轨迹为弧CD,∵AB=4,ABAC,∴AC=2,∴OA=OC,∵DA=DC,OA=OC,∴DO⊥AC,∴∠DOC=90°,∴点G的运动轨迹的长为π.故选:D.5、C【解析】【分析】根据垂径定理得出CM=DM,再由已知条件得出圆的半径为5,在Rt△OCM中,由勾股定理得出CM即可,从而得出CD.【详解】解:∵AB是⊙O的直径,弦CD⊥AB,∴CM=DM,∵AM=2,BM=8,∴AB=10,∴OA=OC=5,在Rt△OCM中,OM2+CM2=OC2,∴CM==4,∴CD=8.故选:C.【考点】本题考查了垂径定理,圆周角定理以及勾股定理,掌握定理的内容并熟练地运用是解题的关键.二、填空题1、直径所对的圆周角是直角【解析】【分析】根据圆周角定理即可得出结论.【详解】解:根据“直径所对的圆周角是直角”得出.故答案为直径所对的圆周角是直角.【考点】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.2、6【解析】【分析】根据多边形的内角和公式求出扇形的圆心角,然后按扇形面积公式列方程求解计算即可.【详解】解:∵正六边形的内角是120度,阴影部分的面积为24π,设正六边形的边长为r,∴,解得r=6.(负根舍去)则正六边形的边长为6.故答案为:【考点】本题考查的是正多边形与圆,扇形面积,掌握以上知识是解题的关键.3、48【解析】【分析】根据切线长定理得到AE=AH,BE=BF,CF=CG,DH=DG,得到AD+BC=AB+CD=24,根据四边形的周长公式计算,得到答案.【详解】解:∵四边形ABCD是⊙O的外切四边形,∴AE=AH,BE=BF,CF=CG,DH=DG,∴AD+BC=AB+CD=24,∴四边形ABCD的周长=AD+BC+AB+CD=24+24=48,故答案为:48.【考点】本题考查了切线长定理,掌握从圆外一点引圆的两条切线,它们的切线长相等是解题的关键.4、12【解析】【分析】连接OA、OD、OF,如图,利用正多边形与圆,分别计算⊙O的内接正四边形与内接正三角形的中心角得到∠AOD=90°,∠AOF=120°,则∠DOF=30°,然后计算即可得到n的值.【详解】解:连接OA、OD、OF,如图,设这个正多边形为n边形,∵AD,AF分别为⊙O的内接正四边形与内接正三角形的一边,∴∠AOD==90°,∠AOF==120°,∴∠DOF=∠AOF-∠AOD=30°,∴n==12,即DF恰好是同圆内接一个正十二边形的一边.故答案为:12.【考点】本题考查了正多边形与圆:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆;熟练掌握正多边形的有关概念.5、【解析】【分析】将圆锥的侧面展开,设顶点为B',连接BB',AE.线段AC与BB'的交点为F,线段BF是最短路程.【详解】如图将圆锥侧面展开,得到扇形ABB′,则线段BF为所求的最短路程.设∠BAB′=n°.∵=4,∴n=120即∠BAB′=120°.∵E为弧BB′中点,∴∠AFB=90°,∠BAF=60°,∴BF=AB•sin∠BAF=6×=,∴最短路线长为.故答案为:.【考点】本题考查了平面展开−最短路径问题,解题时注意把立体图形转化为平面图形的思维.三、解答题1、12【解析】【分析】连接OB、OC,如图,利用圆周角定理得到∠BOC=60°,则可判断△OBC为等边三角形,从而得到OB=6.【详解】解:连接OB、OC,如图,∵∠BOC=2∠BAC=2×30°=60°,而OB=OC,∴△OBC为等边三角形,∴OB=BC=6,∴⊙O的直径等于12.故答案为:12.【考点】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理,掌握这些知识点是解题关键.2、5.【解析】【详解】试题分析:首先连接OB,OC,OD,由等边△ABC内接于⊙O,BD为内接正十二边形的一边,可求得∠BOC,∠BOD的度数,继而证得△COD是等腰直角三角形,继而求得答案.试题解析:连接OB、OC、OD.∵等边△ABC内接于⊙O,BD为内接正十二边形的一边,∴∠BOC=×360°=120°,∠BOD=×360°=30°.∴∠COD=∠BOC-∠BOD=90°.∵OC=OD,∴∠OCD=45°.∴OC=CD·cos45°=5×=5(cm).∴⊙O的半径R=5cm.【考点】本题考查了正多边形与圆以及等腰直角三角形性质,正确地添加辅助线是解题的关键,注意掌握数形结合思想的应用.3、见解析【解析】【分析】先连接,,根据直角三角形斜边上的中线等于斜边的一半,可得,即可证结论.【详解】证明:连接,.分别是的高,为的中点,,∴点在以点为圆心的同一圆上.【考点】本题主要考查了直角三角形和圆的性质,掌握直角三角形斜边上的中线等于斜边的一半这一性质是关键.4、(1)见解析;(2)AD=.【解析】【分析】(1)连接FO,可根据三角形中位线的性质可判断易证OF∥AB,然后根据直径所对的圆周角是直角,可得CE⊥AE,进而知OF⊥CE,然后根据垂径定理可得∠FEC=∠FCE,∠OEC=∠OCE,再通过Rt△ABC可知∠OEC+∠FEC=90°,因此可证FE为⊙O的切线;(2)在Rt△OCD中和Rt△ACD中,分别利用勾股定理分别求出CD,AD的长即可.【详解】(1)证明:连接CE,如图所示:∵AC为⊙O的直径,∴∠AEC=90°.∴∠BEC=90°,∵点F为BC的中点,∴EF=BF=CF,∴∠FEC=∠FCE,∵OE=OC,∴∠OEC=∠OCE,∵∠FCE+∠OCE=∠ACB=90°,∴∠FEC+∠OEC=∠OEF=90°,∴EF是⊙O的切线.(2)解:∵OA=OE,∠EAC=60°,∴△AOE是等边三角形.∴∠AOE=60°,∴∠COD=∠AOE=60°,∵⊙O的半径为2,∴OA=OC=2在Rt△OCD中,∵∠OCD=90°,∠COD=60°,∴∠ODC=30°,∴OD=2OC=4,∴CD=.在Rt△ACD中,∵∠ACD=90°,AC=4,CD=.∴AD==.【考点】本题主要考查直角三角形、全等三角形的判定与性质以及与圆有关的位置关系.5、(1)平行;内错角相等,两直线平行;(2)相切,理由见解析;(3)π【解析】【分析】(1)根据角平分线的定义、圆的性质可得,根据内
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025安徽亳州机场管理有限公司劳务派遣人员招聘第一轮测试暨第二轮专业笔试历年参考题库附带答案详解
- 2025四川九洲投资控股集团有限公司软件与数据智能军团招聘开发工程师测试笔试历年参考题库附带答案详解
- 2026年云南城市建设职业学院单招职业倾向性考试题库及答案解析(名师系列)
- 2025中国安能二局厦门分公司应急技能人才招聘20人笔试历年参考题库附带答案详解
- 2026年常德科技职业技术学院单招综合素质考试题库及答案解析(名师系列)
- 2026年哈尔滨传媒职业学院单招职业适应性考试题库及答案解析(名师系列)
- 2026年山西林业职业技术学院单招职业适应性考试题库及答案解析(夺冠系列)
- 2026年山东畜牧兽医职业学院单招综合素质考试题库及答案解析(名师系列)
- 2026年山西省财政税务专科学校单招职业倾向性考试题库附答案解析
- 2026年怀化职业技术学院单招职业倾向性测试必刷测试卷附答案解析
- CNAS-CC121-2017 环境管理体系审核及认证的能力要求
- NSR600RF保护测控装置技术使用说明书
- 农村承包蟹塘合同书5篇
- 2024年同等学力申硕《英语》试题真题及答案
- 第一篇病历书写基本规范
- 2025年教科版小学科学六年级上册《纸桥承重》标准课件
- DBJ51T 189-2022 四川省建设工程施工现场安全资料管理标准
- 数控铣削加工实训报告
- 天然气利用工程中低压燃气管道工程监理实施细则
- 《工会基础知识》考试题库300题(含答案)
- 青海省地图含市县地图矢量分层地图模板
评论
0/150
提交评论