中考数学总复习《旋转》高分题库含完整答案详解(典优)_第1页
中考数学总复习《旋转》高分题库含完整答案详解(典优)_第2页
中考数学总复习《旋转》高分题库含完整答案详解(典优)_第3页
中考数学总复习《旋转》高分题库含完整答案详解(典优)_第4页
中考数学总复习《旋转》高分题库含完整答案详解(典优)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考数学总复习《旋转》高分题库考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是(

)A.68° B.20° C.28° D.22°2、2020年7月20日,宁津县人民政府印发《津县城市生活垃圾分类制度实施方案》的通知,全面推行生活垃圾分类.下列垃圾分类标志分别是厨余垃圾、有害垃圾、其他垃圾和可回收物,其中既是轴对称图形又是中心对称图形的是(

)A. B. C. D.3、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到△EDC,斜边DE交AC边于点F,则图中阴影部分的面积为(

)A.3 B.1 C. D.4、如图,已知点O(0,0),P(1,2),将线段PO绕点P按顺时针方向以每秒90°的速度旋转,则第19秒时,点O的对应点坐标为()A.(0,0) B.(3,1) C.(﹣1,3) D.(2,4)5、下列命题是真命题的是(

)A.一个角的补角一定大于这个角 B.平行于同一条直线的两条直线平行C.等边三角形是中心对称图形 D.旋转改变图形的形状和大小第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有__种.2、在平面直角坐标系中,将点A先向右平移4个单位,再向下平移6个单位得到点B,如果点A和点B关于原点对称,那么点A的坐标是____________.3、如图,在平面直角坐标系中,一次函数的图像分别交、轴于点、,将直线绕点按顺时针方向旋转,交轴于点,则直线的函数表达式是__________.4、如图,在中,,,,将绕点按逆时针方向旋转得到,连接,,直线,相交于点,连接,在旋转过程中,线段的最大值为__________.5、如图,在坐标系中放置一菱形,已知,点B在y轴上,,先将菱形沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转12次,点B的落点依次为,,,,则的横坐标为______.三、解答题(5小题,每小题10分,共计50分)1、如图1,直线上有一点O,过点O在直线上方作射线.将一直角三角板的直角顶点放在点O处,一条直角边在射线上,另一边在直线上方.将直角三角板绕着点O按每秒的速度逆时针旋转一周,设旋转时间为t秒.(1)当直角三角板旋转到如图2的位置时,恰好平分,此时,与之间有何数量关系?并说明理由;(2)在旋转的过程中,若射线的位置保持不变,且.①当边与射线相交时(如图3),则的值为_______;②当边所在的直线与平行时,求t的值.2、如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点分别是格点.(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的;(2)将△ABC先左移2个单位,再下移4个单位,画出平移后的.3、分别画出绕点逆时针旋转和后的图形.4、如图,点M是∠ABC的边BA上的动点,BC=6,连接MC,并将线段MC绕点M逆时针旋转90°得到线段MN.(1)作MH⊥BC,垂足H在线段BC上,当∠CMH=∠B时,判断点N是否在直线AB上,并说明理由;(2)若∠ABC=30°,NC∥AB,求以MC、MN为邻边的正方形的面积S.5、如图,在等腰△ABC中,点D为直线BC上一动点(点D不B、C重合),以AD为边向右侧作正方形ADEF,连接CF.【猜想】如图①,当点D在线段BC上时,直接写出CF、BC、CD三条线段的数量关系.【探究】如图②,当点D在线段BC的延长线上时,判断CF、BC,CD三条线段的数量关系,并说明理由.【应用】如图③,当点D在线段BC的反向延长线上时,点A、F分别在直线BC两侧,AE.DF交点为点O连接CO,若,,则.-参考答案-一、单选题1、D【解析】【分析】利用矩形的性质、旋转的性质及多边形内角和定理即可求得.【详解】∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,且∠ABC=∠D′=90°,∴,∴∠BAB′=90°-68°=22°,即∠α=22°.故选:D.【考点】本题考查了旋转的性质,矩形的性质,多边形的内角和定理等知识,矩形性质的运用是关键.2、B【解析】【分析】根据轴对称图形和中心对称图形的概念去判断即可.【详解】A、既不是轴对称图形也不是中心对称图形,故不满足题意;B、是轴对称图形也是中心对称图形,故满足题意;C、既不是轴对称图形也不是中心对称图形,故不满足题意;D、既不是轴对称图形也不是中心对称图形,故不满足题意;故选:B.【考点】本题考查了轴对称图形和中心对称图形,关键是紧扣轴对称图形和中心对称图形的概念.3、D【解析】【分析】根据题意及旋转的性质可得是等边三角形,则,,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积.【详解】解:如图,设与相交于点,,,,旋转,,是等边三角形,,,,,,,,阴影部分的面积为故选D【考点】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键.4、B【解析】【分析】依据线段PO绕点P按顺时针方向以每秒90°的速度旋转,即可得到19秒后点O旋转到点O'的位置,再根据全等三角形的对应边相等,即可得到点O的对应点O'的坐标.【详解】解:如图所示,∵线段PO绕点P按顺时针方向以每秒90°的速度旋转,每4秒一个循环,19=4×4+3,∴3×90°=270°,∴19秒后点O旋转到点O'的位置,∠OPO'=90°,如图所示,过P作MN⊥y轴于点M,过O'作O'N⊥MN于点N,则∠OMP=∠PNO'=90°,∠POM=∠O'PN,OP=PO',在△OPM和△PO'N中,,∴△OPM≌△PO'N(AAS),∴O'N=PM=1,PN=OM=2,∴MN=1+2=3,点O'离x轴的距离为2-1=1,∴点O'的坐标为(3,1),故选:B.【考点】本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.5、B【解析】【分析】由补角的定义、平行线公理,中心对称图形的定义、旋转的性质分别进行判断,即可得到答案.【详解】解:A、一个角的补角不一定大于这个角,故A错误;B、平行于同一条直线的两条直线平行,故B正确;C、等边三角形是轴对称图形,不是中心对称图形,故C错误;D、旋转不改变图形的形状和大小,故D错误;故选:B.【考点】本题考查了补角的定义、平行线公理,中心对称图形的定义、旋转的性质,以及判断命题的真假,解题的关键是熟练掌握所学的知识,分别进行判断.二、填空题1、13【解析】【分析】根据轴对称图形的性质,分别移动一个正方形,即可得出符合要求的答案.【详解】如图所示:故一共有13画法.2、【解析】【分析】先按题目要求对A、B点进行平移,再根据原点对称的特征:横纵坐标互为相反数进行列方程,求解.【详解】设,向右平移4个单位,再向下平移6个单位得到∵A、B关于原点对称,∴,,解得,,∴故答案为:【考点】本题考查点的平移和原点对称的性质,掌握这些是解题关键.3、【解析】【分析】先根据一次函数求得、坐标,再过作的垂线,构造直角三角形,根据勾股定理和正余弦公式求得的长度,得到点坐标,从而得到直线的函数表达式.【详解】因为一次函数的图像分别交、轴于点、,则,,则.过作于点,因为,所以由勾股定理得,设,则,根据等面积可得:,即,解得.则,即,所以直线的函数表达式是.【考点】本题综合考察了一次函数的求解、勾股定理、正余弦公式,以及根据一次函数的解求一次函数的表达式,要学会通过作辅助线得到特殊三角形,以便求解.4、【解析】【分析】取AB的中点H,连接CH、FH,设EC,DF交于点G,在△ABC中,由勾股定理得到AB=,由旋转可知:△DCE≌△ACB,从而∠DCA=∠BCE,∠ADC=∠BEC,由∠DGC=∠EGF,可得∠AFB=90º,由直角三角形斜边上的中线等于斜边的一半,可得FH=CH=AB=,在△FCH中,当F、C、H在一条直线上时,CF有最大值为.【详解】解:取AB的中点H,连接CH、FH,设EC,DF交于点G,在△ABC中,∠ACB=90º,∵AC=,BC=2,∴AB=,由旋转可知:△DCE≌△ACB,∴∠DCE=∠ACB,DC=AC,CE=CB,∴∠DCA=∠BCE,∵∠ADC=(180º-∠ACD),∠BEC=(180º-∠BCE),∴∠ADC=∠BEC,∵∠DGC=∠EGF,∴∠DCG=∠EFG=90º,∴∠AFB=90º,∵H是AB的中点,∴FH=AB,∵∠ACB=90º,∴CH=AB,∴FH=CH=AB=,在△FCH中,FH+CH>CF,当F、C、H在一条直线上时,CF有最大值,∴线段CF的最大值为.故答案为:【考点】本题考查了旋转的性质、勾股定理,解决本题的关键是掌握全等的性质.5、【解析】【分析】连接AC,根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4,由于,因此点B向右平移8即可到达点,根据点B的坐标就可求出点的坐标.【详解】连接AC,如图所示,∵四边形OABC是菱形,∴,∵,∴是等边三角形,∴,∴,∵,∴,画出第5次、第6次、第7次翻转后的图形,如图所示,由图可知:每翻转6次,图形向右平移4,∵,∴点B向右平移2×4=8个单位到点,∵B点的坐标为,∴的坐标为,故答案为:.【考点】本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力.发现“每翻转6次,图形向右平移4”是解决本题的关键.三、解答题1、(1),理由见解析(2)①;②或【解析】【分析】(1)由,可知,,由平分,可知,进而可证;

(2)由,,可知,,进而得,由此可求出结果;②由以及,结合题意可分两种情况:当在直线上方时,或当在直线下方时,将两种情况分别进行讨论求解即可.(1),理由如下:∵,∴,,∵平分,∴,∴;(2)①;

∵,∴,∵,,∴,∴的值为.②∵,∴,(I)如图3-1,当在直线上方时,∵,∴,∴,∵直角三角板绕点O按每秒的速度旋转,∴;(II)解法一:如图3-2,当在直线下方时,∵,∴,∴,,∴直角三角板绕点O旋转的角度为,∵直角三角板绕点O按每秒的速度逆时针旋转,∴,

解法二:如图3-3,在②(Ⅰ)的基础上,继续将直角三角板绕点O按每秒的速度逆时针旋转,得到直角三角板,此时,,

∴直角三角板绕点O旋转的角度为,

∵直角三角板绕点O按每秒的速度逆时针旋转,∴,

综合(Ⅰ)(Ⅱ)得:或.【考点】本题考查旋转问题,角平分线的性质,以及角的互相转换,能够掌握数形结合思想是解决本题的关键.2、(1)见解析(2)见解析【解析】【分析】(1)根据题意找到关于点C的对称点,顺次连接,即为所求;(2)根据题意将先左移2个单位,再下移4个单位,得到,顺次连接,则即为所求(1)如图,为所作.(2)如图,为所作.【考点】本题考查了画旋转图形,平移,掌握旋转的性质与平移的性质是解题的关键.3、画图见解析【解析】【分析】分别确定绕点逆时针旋转后的对应点再顺次连接即可得到答案;分别确定绕点逆时针旋转后的对应点再顺次连接即可得到答案.【详解】解:如图,是绕点逆时针旋转后的三角形,如图,是绕点逆时针旋转后的三角形,【考点】本题考查的是旋转的作图,掌握旋转的性质,旋转中心,旋转角,旋转方向是解题的关键.4、(1)点N在直线AB上,理由见解析(2)以MC、MN为邻边的正方形面积为S=18【解析】【分析】(1)根据∠CMH=∠B,∠CMH+∠C=90°,则∠B+∠C=90°,故∠BMC=90°,即可判断;(2)作CD⊥AB于点D,在△BCM中,已知两角一边,可通过解三角形求出MC的长度,进而求正方形的面积.(1)解:点N在直线AB上,理由如下:∵∠CMH=∠B,∠CMH+∠C=90°,∴∠B+∠C=90°,∴∠BMC=90°,即CM⊥AB,∴线段CM逆时针旋转90°落在直线BA上,即点N在直线AB上(2)解:作CD⊥AB于点D,∵MC=MN,∠CMN=90°,∴∠MCN=45°,∵NC∥AB,∴∠BMC=45°,∵BC=6,∠B=30°,∴CD=3,MC,∴S=MC2=18,即以MC、MN为邻边的正方形面积为S=18.【考点】本题主要考查了旋转的性质,等腰直角三角形的性质,正方形的性质,解三角形等知识,作辅助线,构造两个特殊的直角三角形是解题的关键.5、【猜想】CD=BC-CF,理由见解析;【探究】CF=BC+CD,理由见解析;【应用】【解析】【分析】【猜想】利用SAS证明△BAD≌△CAF,得出BD=CF,然后根据线段的和差关系可得结论;【探究】利用SAS证明△BAD≌△CAF,得出BD=CF,然后根据线段的和差关系可得出结论;【应用】利用SAS证明△BAD≌△CAF,得出BD=CF,∠ACF=∠ABD=135°,求出∠DCF=90°,在Rt△DCF中利用勾股定理求出DF,利用直角三角形的斜边中线的性质可得结论.【详解】解:【猜想】CD=BC-CF,理由如下:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论