重难点解析京改版数学9年级上册期末测试卷含答案详解(A卷)_第1页
重难点解析京改版数学9年级上册期末测试卷含答案详解(A卷)_第2页
重难点解析京改版数学9年级上册期末测试卷含答案详解(A卷)_第3页
重难点解析京改版数学9年级上册期末测试卷含答案详解(A卷)_第4页
重难点解析京改版数学9年级上册期末测试卷含答案详解(A卷)_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

京改版数学9年级上册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题26分)一、单选题(6小题,每小题2分,共计12分)1、点P(2,﹣2)在反比例函数的图象上,则下列各点在该函数图象上的是(

)A.(﹣4,1) B.(1,4) C.(﹣2,﹣2) D.(4,)2、在平面直角坐标系中,将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为(

)A. B. C. D.3、对于函数的图象,下列说法不正确的是(

)A.开口向下 B.对称轴是直线C.最大值为 D.与轴不相交4、下列说法中不正确的是()A.任意两个等边三角形相似 B.有一个锐角是40°的两个直角三角形相似C.有一个角是30°的两个等腰三角形相似 D.任意两个正方形相似5、将抛物线C1:y=(x-3)2+2向左平移3个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为().A.y=x2-2 B.y=-x2+2 C.y=x2+2 D.y=-x2-26、关于的方程有两个不相等的实根、,若,则的最大值是(

)A.1 B. C. D.2二、多选题(7小题,每小题2分,共计14分)1、季是呼吸道疾病多发的季节,为预防病毒的传播,某学校用药熏消毒法对教室进行消毒,已知药物释放过程中,教室内每立方米空气中含药量与时间成正比例;药物释放完毕后,y与t成反比例,如图所示.空气中的含药量低于时对身体无害.则下列选项正确的是(

)A.药物释放过程中,y与t的函数表达式是B.药物的释放过程需要2hC.从开始消毒,6h后空气中的含药量低于D.空气中含药量不低于的时长为6h2、如图,在2×3的方格中,画有格点△ABC,下列选项的方格中所画格点三角形(阴影部分)与△ABC不相似的是()A. B. C. D.3、△ABC和△A′B′C′符合下列条件,其中使△ABC和△A′B′C′相似的是(

)A.∠A=∠A′=45°,∠B=26°,∠B′=109°B.AB=1,AC=1.5,BC=2,A′B′=4,A′C′=2,B′C′=3C.∠A=∠B′,AB=2,AC=2.4,A′B′=3.6,B′C′=3D.AB=3,AC=5,BC=7,A′B′=,A′C′=,B′C′=4、下列用尺规等分圆周的说法中,正确的是(

)A.在圆上依次截取等于半径的弦,就可以六等分圆B.作相互垂直的两条直径,就可以四等分圆C.按A的方法将圆六等分,六个等分点中三个不相邻的点三等分圆D.按B的方法将圆四等分,再平分四条弧,就可以八等分圆周5、如图是二次函数图象的一部分,过点,,对称轴为直线.则错误的有(

)A. B. C. D.6、如图,在△ABC中,点D,E分别在边AB、AC上,下列条件中能判断△AED∽△ABC的是()A.∠AED=∠ABC B.∠ADE=∠ACBC. D.7、如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且,下列结论:①∠BAE=30°,②△ABE∽△AEF,③AE⊥EF,④△ADF∽△ECF.其中正确的为(

)A.① B.② C.③ D.④第Ⅱ卷(非选择题74分)三、填空题(7小题,每小题2分,共计14分)1、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=,BC的中点为D,将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG,在旋转过程中,DG的最大值是________2、如图是二次函数和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是_____.3、写出一个满足“当时,随增大而减小”的二次函数解析式______.4、二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:x…-3-2-101…y…-4-3-4-7-12…则该图象的对称轴是___________5、在平面直角坐标系中,已知抛物线y=mx-2mx+m-2(m>0).(1)抛物线的顶点坐标为_________;(2)点M(x1,y1)、N(x2,y2)(x1<x2≤3)是拋物线上的两点,若y1<y2,x2-x1=2,则y2的取值范围为_________(用含m的式子表示)6、二次函数的最大值是__________.7、已知二次函数,当分别取时,函数值相等,则当取时,函数值为______.四、解答题(6小题,每小题10分,共计60分)1、已知抛物线c:y=-x2-2x+3和直线l:y=x+d。将抛物线c在x轴上方的部分沿x轴翻折180°,其余部分保持不变,翻折后的图象与x轴下方的部分组成一个“M”型的新图象(即新函数m:y=-|x2+2x-3|的图象)。(1)当直线l与这个新图象有且只有一个公共点时,d=;(2)当直线l与这个新图象有且只有三个公共点时,求d的值;(3)当直线l与这个新图象有且只有两个公共点时,求d的取值范围;(4)当直线l与这个新图象有四个公共点时,直接写出d的取值范围.2、如图,在平面直角坐标系中,直线与轴、轴分别交于、两点,抛物线经过、两点;(1)求抛物线的解析式;(2)点为轴上一点,点为直线上一点,过作交轴于点,当四边形为菱形时,请直接写出点坐标;(3)在(2)的条件下,且点在线段上时,将抛物线向上平移个单位,平移后的抛物线与直线交于点(点在第二象限),点为轴上一点,若,且符合条件的点恰好有2个,求的取值范围.3、在矩形中,于点,点是边上一点.(1)若平分,交于点,PF⊥BD,如图(1),证明四边形是菱形;(2)若,如图(2),求证:.4、某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y是销售价格x(单位:元)的一次函数.(1)求y关于x的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.5、如图,Rt△ABO的顶点A是反比例函数的图象与一次函数的图象在第二象限的交点,AB⊥x轴于点B,且.(1)求反比例函数和一次函数的解析式;(2)求一次函数与反比例函数图象的两个交点A,C的坐标.6、如图所示,抛物线的对称轴为直线,抛物线与轴交于、两点,与轴交于点.(1)求抛物线的解析式;(2)连结,在第一象限内的抛物线上,是否存在一点,使的面积最大?最大面积是多少?-参考答案-一、单选题1、A【解析】【分析】根据点(2,-2)在反比例函数的图象上,可以求得的值,从而可以判断各个选项中的点是否在该函数的图象上,本题得以解决.【详解】解:∵点P(2,﹣2)在反比例函数的图象上,∴A.(﹣4,1),,故该选项正确,符合题意,

B.(1,4),,故该选项不符合题意,C.(﹣2,﹣2),,故该选项不符合题意,

D.(4,),,故该选项不符合题意,故选A【考点】本题考查了反比例函数图象上点的坐标特征,解题的关键是求出反比例系数,解决该题型题目时,结合点的坐标利用反比例函数图象上点的坐标特征求出值是关键.2、B【解析】【分析】先求出平移后抛物线的顶点坐标,进而即可得到答案.【详解】解:∵的顶点坐标为(0,0)∴将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线的顶点坐标为(-2,1),∴所得抛物线对应的函数表达式为,故选B【考点】本题主要考查二次函数的平移规律,找出平移后二次函数图像的顶点坐标或掌握“左加右减,上加下减”,是解题的关键.3、D【解析】【分析】根据二次函数的性质,进行判断,即可得到答案.【详解】解:∵,则开口向下,故A正确;对称轴是直线,故B正确;当,y有最大值k,故C正确;当,,与y轴肯定有交点,故D错误;故选择:D.【考点】本题考查了二次函数的性质,解题的关键是熟记二次函数的性质.4、C【解析】【分析】直接利用相似图形的性质分别分析得出答案.【详解】A.任意两个等边三角形相似,说法正确;B.有一个锐角是40°的两个直角三角形相似,说法正确;C.有一个角是30°的两个等腰三角形相似,30°有可能是顶角或底角,故说法错误;D.任意两个正方形相似,说法正确.故选:C.【考点】本题主要考查了图形的相似,正确把握相似图形的判定方法是解题关键.5、D【解析】【分析】根据抛物线C1的解析式得到顶点坐标,利用二次函数平移的规律:左加右减,上加下减,并根据平移前后二次项的系数不变可得抛物线C2的顶点坐标,再根据关于x轴对称的两条抛物线的顶点横坐标相等,纵坐标互为相反数,二次项系数互为相反数可得到抛物线C3所对应的解析式.【详解】解:∵抛物线C1:y=(x-3)2+2,其顶点坐标为(3,2)∵向左平移3个单位长度,得到抛物线C2∴抛物线C2的顶点坐标为(0,2)∵抛物线C2与抛物线C3关于x轴对称∴抛物线C3的横坐标不变,纵坐标互为相反数,二次项系数互为相反数∴抛物线C3的顶点坐标为(0,-2),二次项系数为-1∴抛物线C3的解析式为y=-x2-2故选:D.【考点】本题主要考查了二次函数图象的平移、对称问题,熟练掌握平移的规律以及关于x轴对称的两条抛物线的顶点的横坐标相等,纵坐标互为相反数,二次项系数互为相反数是解题的关键.6、D【解析】【分析】根据一元二次方程根与系数的关系,求得两根之和和两根之积,再根据两根关系,求得系数的关系,代入代数式,配方法化简求值即可.【详解】解:由方程有两个不相等的实根、可得,,,∵,可得,,即化简得则故最大值为故选D【考点】此题考查了一元二次方程根与系数的关系,涉及了配方法求解代数式的最大值,根据一元二次方程根与系数的关系得到系数的关系是解题的关键.二、多选题1、AC【解析】【分析】根据题意及图象先确定反比例函数解析式及正比例函数解析式,然后根据题意对各选项进行判断即可.【详解】解:A、药物释放完毕后,y与t成反比例,设,由图象可得经过点,∴k=3×,∴,当y=1时,t=,∴正比例函数经过点,设正比例函数解析式为y=at,将点代入求得:a=,∴正比例函数解析式为y=t,故A正确;B、由A选项可得,当t=时,y达到最大为1,故B错误;C、当t=6时,代入反比例函数可得:,∴6h后空气中的含药量低于0.25mg/m3,故C正确;D、根据图象及C选项可得:空气中含药量不低于0.25mg/m3的时长小于6h,故D错误;故选:AC.【考点】题目主要考查一次函数与反比例函数的综合应用,理解题意,确定出一次函数与反比例函数解析式是解题关键.2、BCD【解析】【分析】先判断格中所画格点三角形为直角三角形,利用两组对应边的比相等且夹角对应相等的两个三角形相似,否则不相似,对各选项进行判断.【详解】解:由图知:∠ACB=90°,AC=2,BC=1,AC:BC=2,A选项中,三条线段的长为,因为,此三角形为直角三角形,长直角边与短直角边的比为2,所以A选项的方格中所画格点三角形(阴影部分)与△ABC相似,不符合题意;B选项中,长直角边与短直角边的比为3,所以B中格点三角形与△ABC不相似,符合题意;C选项中,三条线段的长为√,因为,此三角形为直角三角形,两直角边的比为1,所以C选项的方格中所画格点三角形(阴影部分)与△ABC不相似,符合题意;D选项中,三角形的两直角边的比为1:1.所以D中格点三角形与△ABC不相似,符合题意,故选:BCD.【考点】本题考查相似三角形的判定,能在格点中表示各个线段的长度和掌握相似三角形的判定定理是解决此题的关键.3、ABC【解析】【分析】根据三角形相似的判定定理逐项排查即可.【详解】解:A:∵∠A=∠A′=45°,∠B=26°,∠B′=109°,∴∠C=109°,∠C′=26°,∴∠B=∠C,∴△ABC∽△A′C′B′,B:∵AB=1,AC=1.5,BC=2,A′B′=4,A′C′=2,B′C′=3,∴,∴△ABC∽△C′A′B′;C:∵∠A=∠B′,AB=2,AC=2.4,A′B′=3.6,B′C′=3,∴AB:B′C′=AC:A′B′=2:3,∴△ABC∽△B′C′A′;D:∵AB=3,AC=5,BC=7,A′B′=,A′C′=

B′C′=,∴,∴不相似.故选ABC.【考点】本题主要考查了相似三角形的判定,相似三角形的判定方法主要有:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.4、ABCD【解析】【分析】由圆心角、弧、弦的关系定理得出ABCD正确,即可得出结论.【详解】解:根据圆心角、弧、弦的关系定理得:在圆上依次截取等于半径的弦,六条弧相等,就可以六等分圆,∴A正确;∵相互垂直的两条直径得出4个相等的圆心角是直角,∴4条弧相等,∴B正确;在圆上依次截取等于半径的弦,六条弧相等,六个等分点中三个不相邻的点三等分圆,∴C正确;∵相互垂直的两条直径得出4个相等的圆心角是直角,再平分四条弧,就可以八等分圆周,∴D正确;故选:ABCD.【考点】本题考查了正多边形和圆、圆心角、弧、弦的关系定理;熟练掌握圆心角、弧、弦的关系定理,由题意得出相等的弧是解题的关键.5、BD【解析】【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴x=−1可得2a+b的符号;再由根的判别式可得,根据二次函数的对称性进而对所得结论进行判断.【详解】解:A、由抛物线的开口向下知a<0,与y轴的交点在y轴的正半轴上,知c>0,∵对称轴为直线,得2a=b,∴a、b同号,即b<0,∴abc>0;故本选项正确,不符合题意;B、∵对称轴为,得2a=b,∴2a+b=4a,且a≠0,∴2a+b≠0;故本选项错误,符合题意;C、从图象知,该函数与x轴有两个不同的交点,所以根的判别式,即;故本选项正确,不符合题意;D、∵−3<x1<−2,∴根据二次函数图象的对称性,知当x=1时,y<0;又由A知,2a=b,∴a+b+c<0;∴b+b+c<0,即3b+2c<0;故本选项错误,符合题意.故选:BD.【考点】本题主要考查了二次函数图象与系数之间的关系,熟练运用对称轴的范围求2a与b的关系,二次函数与方程及不等式之间的关系是解决本题的关键.6、ABD【解析】【分析】根据三角形相似的判断方法判断即可.【详解】解:A、∵∠AED=∠ABC,∠A=∠A,∴△AED∽△ABC,符合题意;B、∵∠ADE=∠AC,∠A=∠A,∴△AED∽△ABC,符合题意;C、,不能判定△AED∽△ABC,不符合题意;D、∵,∠A=∠A,∴△AED∽△ABC,符合题意.故选:ABD.【考点】此题考查了三角形相似的判断方法,解题的关键是熟练掌握三角形相似的判定方法.7、BC【解析】【分析】根据相似三角形的定义,已知条件判定相似的三角形,再利用相似三角形的性质逐一判断选项即可.【详解】解:在正方形中,是的中点,是上一点,且,,..,.,,,..,.②③正确.故选:BC.【考点】本题考查了相似三角形的判定与性质,解题的关键是掌握判定定理有①有两个对应角相等的三角形相似,②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.三、填空题1、6【解析】【分析】解直角三角形求出AB、BC,再求出CD,连接CG,根据直角三角形斜边上的中线等于斜边的一半求出CG,然后根据三角形的任意两边之和大于第三边判断出D、C、G三点共线时DG有最大值,再代入数据进行计算即可得解.【详解】连接CG,∵BC的中点为D∵△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G由三角形的三边关系得∴D、C、G三点共线时,DG有最大值故答案为:6.【考点】本题考查了旋转三角形的问题,掌握旋转的性质、解直角三角形、三角形的三边关系是解题的关键.2、﹣1≤x≤2【解析】【分析】根据图象可以直接回答,使得y1≥y2的自变量x的取值范围就是直线y1=kx+m落在二次函数y2=ax2+bx+c的图象上方的部分对应的自变量x的取值范围.【详解】根据图象可得出:当y1≥y2时,x的取值范围是:﹣1≤x≤2.故答案为:﹣1≤x≤2.【考点】本题考查了二次函数的性质.本题采用了“数形结合”的数学思想,使问题变得更形象、直观,降低了题的难度.3、(答案不唯一)【解析】【分析】先根据二次函数的图象和性质取对称轴x=2,设抛物线的解析式为y=a(x-2)2,由于在抛物线对称轴的右边,y随x增大而减小,得出a<0,于是去a=-1,即可解答.【详解】解:设抛物线的解析式为y=a(x-2)2,∵在抛物线对称轴的右边,y随x增大而减小,∴a<0,符合上述条件的二次函数均可,可取a=-1,则y=-(x-2)2.故答案为:y=-(x-2)2.【考点】本题考查了二次函数的图象和性质,解题的关键是掌握二次函数的图象和性质.4、【解析】【分析】根据二次函数的图象具有对称性和表格中的数据,可以计算出该函数图象的对称轴.【详解】解:由表格可得,当x取-3和-1时,y值相等,该函数图象的对称轴为直线,故答案为:.【考点】本题考查二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的对称性解答.5、

(1,-2)

【解析】【分析】(1)将二次函数解析式化为顶点式求解;(2)抛物线的对称轴为直线x=1,得到当点M,N关于抛物线的对称轴对称时,x1+x2=2,结合x2-x1=2,可得x1=0,x2=2,得到当2<x2≤3时,y1<y2,再将x=2、x=3代入函数关系式进行求解即可.【详解】(1)∵,∴抛物线顶点坐标为(1,-2),故答案为(1,-2).(2)∵抛物线的对称轴为直线x=1,∴当点M,N关于抛物线的对称轴对称时,x1+x2=2,结合x2-x1=2,可得x1=0,x2=2,∴当2<x2≤3时,y1<y2,对于y=m(x-1)2-2,当x=2时,y=m-2;当x=3时,y=4m-2,∴.【考点】本题考查二次函数图象上的点的特征,解题关键是掌握二次函数与方程及不等式的关系.6、8【解析】【分析】二次函数的顶点式在x=h时有最值,a>0时有最小值,a<0时有最大值,题中函数,故其在时有最大值.【详解】解:∵,∴有最大值,当时,有最大值8.故答案为8.【考点】本题考查了二次函数顶点式求最值,熟练掌握二次函数的表达式及最值的确定方法是解题的关键.7、2020【解析】【分析】根据二次函数y=2x2+2020,当x分别取x1,x2(x1≠x2)时,函数值相等,可以得到x1和x2的关系,从而可以得到2x1+2x2的值,进而可以求得当x取2x1+2x2时,函数的值.【详解】解:∵二次函数y=2x2+2020,当x分别取x1,x2(x1≠x2)时,函数值相等,∴2x12+2020=2x22+2020,∴x1=-x2,∴2x1+2x2=2(x1+x2)=0,∴当x=2x1+2x2时,y=2×0+2020=0+2020=2020,故答案为:2020.【考点】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.四、解答题1、(1)d=;(2)d=或d=(3)<d<或d<;(4)<d<。【解析】【分析】(1)令-x2-2x+3=x+d求解即可;(2)设抛物线c:y=-x2-2x+3与x轴交于点A(-3,0),点B(1,0),则根据方程有两个相等的实根求出P的坐标,然后求解即可;(3)(4)根据(2)求出的P点坐标进行数形结合画图找出d的取值范围即可.【详解】解:(1)当直线l经过点A(-3,0)时,d=;(2)设抛物线c:y=-x2-2x+3与x轴交于点A(-3,0),点B(1,0),直线l:y=x+d与抛物线c:y=x2+2x-3(-3<x<1)相切于点P,则点P的横坐标恰好是方程x+d=x2+2x-3,即2x2+3x-2d-6=0(-3<x<1)的两个相等实数根,解△=9+8(2d+6)=0得d=,∴点P的坐标为().①当直线l经过点B(1,0)时,直线l与这个新图象有且只有三个公共点,解得d=;②当直线l经过点P()时,直线l与这个新图象有且只有三个公共点,解得d=;

∴综合①、②得:d=或d=(3)①由平移直线l可得:直线l从经过点A(-3,0)开始向下平移到直线l经过点P()的过程中,直线l与这个新图象有且只有两个公共点,可得<d<②直线l从经过点P()继续向下平移的过程中,直线l与这个新图象有且只有两个公共点,可得d<;∴综合①、②得:<d<或d<;(4)如图:当直线l经过点B(1,0)时,直线l与这个新图象有且只有三个公共点,解得d=;当直线l继续向下平移的过程中经过点P(),直线l与这个新图象有且只有三个公共点,可得d=;∴要使直线l与这个新图象有四个公共点则d的取值范围是<d<.【考点】本题考查的是二次函数综合运用,关键是通过数形变换,确定变换后图形与直线的位置关系.2、(1);(2);;(3)【解析】【分析】(1)由题意易得,,然后代入抛物线解析式进行求解即可;(2)由题意可画出图象,设点,然后求出直线AB的解析式为,则可设点,点,进而根据中点坐标公式及两点距离公式可进行求解;(3)过作轴交于,由(2)可得:,,则有,设,,进而可得,则,然后可得,则有,最后根据一元二次方程根的判别式可进行求解.【详解】解:(1)∵直线与轴、轴分别交于、两点,∴,,∵抛物线经过、两点,∴,解得:,∴抛物线的解析式为;(2)由(1)可得,,由题意可得如图所示:设点,直线AB的解析式为,把点A、B代入得:,解得:,∴直线AB的解析式为,设点,点,∵四边形是菱形,∴根据中点坐标公式可得:,即,∴,∵,∴根据两点距离公式可得:,解得:或或(不符合题意,舍去),∴;;(3)过作轴交于,如图所示:由(2)可得:,,∴,设,,∵,∴,∴,,∵,,∴,∴,∴,∴,即,化简得:,当方程有唯一实根时,满足条件的只有一个,∴,化简得:,解得:,(含去)∴,设平移后的抛物线为:,将点坐标代入平移后解析式得:,解得:,.【考点】本题主要考查二次函数的综合及相似三角形的性质与判定,熟练掌握二次函数的综合及相似三角形的性质与判定是解题的关键.3、(1)见解析;(2)见解析【解析】【分析】(1)想办法证明AG=PF,AG∥PF,推出四边形AGFP是平行四边形,再证明PA=PF即可解决问题.(2)证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论