版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东茂名市高州中学7年级下册数学期末考试同步练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如果两个角的两边两两互相平行,且一个角的等于另一个角的,则这两个角的度数分别是()A.48°,72° B.72°,108°C.48°,72°或72°,108° D.80°,120°2、如图,已知直线,相交于O,平分,,则的度数是()A. B. C. D.3、点P是直线外一点,为直线上三点,,则点P到直线的距离是()A.2cm B.小于2cm C.不大于2cm D.4cm4、如图,已知,,平分,则()A.32° B.60° C.58° D.64°5、在中,它的底边为,底边上的高为,则面积,若为定长,则此式中().A.,是变量 B.,,是变量 C.,是变量 D.以上都不对6、下列条件中,能判定△ABC≌△DEF的是()A.∠A=∠D,∠B=∠E,AC=DF B.∠A=∠E,AB=EF,∠B=∠DC.∠A=∠D,∠B=∠E,∠C=∠F D.AB=DE,BC=EF,∠A=∠E7、下列事件中,是必然事件的是()A.掷一枚质地均匀的硬币,一定正面向上 B.车辆随机到达一个路口,遇到红灯C.如果,那么 D.如果,那么8、在相同条件下,移植10000棵幼苗,有8000棵幼苗成活,估计在相同条件下移植一棵这种幼苗成活的概率为()A.0.1 B.0.2 C.0.9 D.0.89、一个三角形的两边长分别为5和2,若该三角形的第三边的长为偶数,则该三角形的第三边的长为()A.6 B.8 C.6或8 D.4或610、如图,直尺的一条边经过直角三角尺的直角顶点且平分直角,它的对边恰巧经过60°角的顶点.则∠1的大小是()A.30° B.45° C.60° D.75°第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、拖拉机耕地,油箱内装有油42升,如果每小时耗油5升,写出所剩油量w(升)与时间t(小时)之间的函数关系式___,其中___是常量,___是变量.2、小明制作了张卡片,上面分别写了一个条件:①;②;③;④;⑤.从中随机抽取一张卡片,能判定是菱形的概率是________.3、如图,P是直线a外一点,点A,B,C,D为直线a上的点,PA=5,PB=4,PC=2,PD=7,根据所给数据写出点P到直线a的距离l的取值范围是______4、如图,在网格中与ABC成轴对称的格点三角形一共有___个.5、有六张正面分别标有数字,0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,则抽取的卡片上的数字为不等式组的解的概率为__.6、已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,从箱中随机取出一个球,这个球是白球的概率为___.7、任意翻一下2021年日历,翻出1月6日的概率为__________;翻出4月31日的概率为__________.8、将含30°角的三角板如图摆放,ABCD,若=20°,则的度数是______.9、(1)“同时投掷两枚骰子,朝上的数字相乘为7”的概率是_______(2)在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球实验后,发现摸到白球的频率约为40%,估计袋中白球有____个.10、掷一枚质地均匀的硬币8次,其中3次正面朝上,5次反面朝上,现再掷一次,正面朝上的概率是_____.三、解答题(6小题,每小题10分,共计60分)1、已知的三边长分别为a,b,c.若a,b,c满足,试判断的形状.2、在一个不透明的口袋中,装有10个除颜色外其它完全相同的球,其中5个红球,3个蓝球,2个白球,它们已经在口袋中搅匀了.下列事件中,哪些是必然发生的?哪些是不可能发生的?哪些是可能发生的?(1)从口袋中任取出一个球,它恰是红球;(2)从口袋中一次性任意取出2个球,它们恰好全是白球;(3)从口袋中一次性任意取出5个球,它们恰好是1个红球,1个蓝球,3个白球.3、如图,长方形纸片ABCD,点E,F,C分别在边AD,AB,CD上.将∠AEF沿折痕EF翻折,点A落在点A'处;将∠DEG沿折痕EG翻折,点D落在点D'处.(1)如图1,若∠AEF=40°,∠DEG=35°,求∠A'ED'的度数;(2)如图1,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示);(3)如图2,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示).4、一个不透明的口袋中放着若干个红球和黑球,这两种球除了颜色之外没有其他任何区别,袋中的球已经搅匀,闭眼从口袋中摸出一个球,经过很多次实验发现摸到红球的频率逐渐稳定在.(1)估计摸到黑球的概率是;(2)如果袋中原有红球12个,又放入n个黑球,再经过很多次实验发现摸到黑球的频率逐渐稳定在,求n的值.5、如图,在边长为1的正方形网格中,点A、B、C、D都在格点上.按要求画图:(1)如图a,在线段AB上找一点P,使PC+PD最小.(2)如图b,在线段AB上找一点Q,使CQ⊥AB,画出线段CQ.(3)如图c,画线段CM∥AB.要求点M在格点上.6、已知AMCN,点B在直线AM、CN之间,AB⊥BC于点B.(1)如图1,请直接写出∠A和∠C之间的数量关系:.(2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.(3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为.-参考答案-一、单选题1、B【分析】根据题意可得这两个角互补,设其中一个角为x,则另一个角为,由两个角之间的数量关系列出一元一次方程,求解即可得.【详解】解:∵两个角的两边两两互相平行,∴这两个角可能相等或者两个角互补,∵一个角的等于另一个角的,∴这两个角互补,设其中一个角为x,则另一个角为,根据题意可得:,解得:,,故选:B.【点睛】题目主要考查平行线的性质、角的数量关系、一元一次方程等,理解题意,列出方程是解题关键.2、C【分析】先根据角平分线的定义求得∠AOC的度数,再根据邻补角求得∠BOC的度数即可.【详解】解:∵OA平分∠EOC,∠EOC=100°,∴∠AOC=∠EOC=50°,∴∠BOC=180°﹣∠AOC=130°.故选:C.【点睛】本题考查角平分线的有关计算,邻补角.能正确识图是解题关键.3、C【分析】根据“直线外一点到直线上各点的所有线段中,垂线段最短”进行解答.【详解】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,且,∴点到直线的距离不大于,故选:C.【点睛】本题考查了垂线段最短的性质,熟记性质是解题的关键.4、D【分析】先根据平行线的性质(两直线平行,内错角相等),可得∠ADB=∠B,再利用角平分线的性质可得:∠ADE=2∠ADB=64°,最后再利用平行线的性质(两直线平行,内错角相等)即可求出答案.【详解】解:∵AD∥BC,∠B=32°,∴∠ADB=∠B=32°.∵DB平分∠ADE,∴∠ADE=2∠ADB=64°,∵AD∥BC,∴∠DEC=∠ADE=64°.故选:D.【点睛】题目主要考查了平行线的性质和角平分线的性质,解题的关键是熟练掌握平行线的性质,找出题中所需的角与已知角之间的关系.5、A【分析】根据常量就是固定不变的量;变量就是随时变化的量.由三角形的面积,若h为定长,就是说h为固定长的意思,即是常量;底边为a,长度具体是多长,不确定,是变量,S随a的变化而变化,也是变量.【详解】解:∵三角形的面积,h为定长,即三角形的高不变;∴三角形的面积与底边的变化有关系,底边越大,面积越大.∴S和a是变量,是常量.故选:A.【点睛】本题主要考查对变量和常量的理解把握情况.常量就是固定不变的量;变量就是随时变化的量.6、A【分析】根据全等三角形的判定方法,对各选项分别判断即可得解.【详解】解:A、∠A=∠D,∠B=∠E,AC=DF,根据AAS可以判定,故此选项符合题意;B、∠A=∠E,AB=EF,∠B=∠D,AB与EF不是对应边,不能判定,故此选项不符合题意;C、∠A=∠D,∠B=∠E,∠C=∠F,没有边对应相等,不可以判定,故此选项不符合题意;D、AB=DE,BC=EF,∠A=∠E,有两边对应相等,一对角不是对应角,不可以判定,故此选项不符合题意;故选A.【点睛】本题考查了全等三角形的判定方法,一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7、D【分析】根据必然事件的概念即可得出答案.【详解】解:∵掷一枚质地均匀的硬币,可能正面向上,也可能反面朝上,为随机事件,∴A选项不合题意,∵车辆随机到达一个路口,可能遇到红灯,也可能遇到绿灯,为随机事件,∴B选项不合题意,∵若a2=b2,则a=b或a=-b,为随机事件,∴C选项不合题意,∵两个相等的数的平方相等,∴如果a=b,那么a2=b2为必然事件,∴D选项符合题意,故选:D.【点睛】本题主要考查必然事件的概念,关键是要牢记必然事件的概念.8、D【分析】利用成活的树的数量÷总数即可得解.【详解】解:8000÷10000=0.8,故选:D.【点睛】此题主要考查了概率,解答本题的关键是明确概率的定义,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.9、D【分析】根据三角形两边之和大于第三边确定第三边的范围,根据题意计算即可.【详解】解:设三角形的第三边长为x,则5﹣2<x<5+2,即3<x<7,∵三角形的第三边是偶数,∴x=4或6,故选:D.【点睛】本题考查了三角形三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.10、D【分析】由AC平分∠BAD,∠BAD=90°,得到∠BAC=45°,再由BD∥AC,得到∠ABD=∠BAC=45°,∠1+∠CBD=180°,由此求解即可.【详解】解:∵AC平分∠BAD,∠BAD=90°,∴∠BAC=45°∵BD∥AC,∴∠ABD=∠BAC=45°,∠1+∠CBD=180°,∵∠CBD=∠ABD+∠ABC=45°+60°=105°,∴∠1=75°,故选D.【点睛】本题主要考查了平行线的性质和角平分线的定义,解题的关键在于能够熟练掌握平行线的性质.二、填空题1、w=42−5t,42,5,w,t.【分析】利用拖拉机耗油量进而得出所剩油量与时间t的函数关系式即可.【详解】由题意可得出:w=42−5t,其中42,5是常量,w,t是变量.故答案为:w=42−5t,42,5,w,t.【点睛】此题考查常量与变量,函数关系式,解题关键在于掌握其性质定义.2、【分析】根据菱形的判定定理判断哪个条件合适,然后根据概率公式计算.【详解】根据菱形的判断,可得①;④能判定平行四边形ABCD是菱形,∴能判定是菱形的概率是,故答案为:.【点睛】本题考查了菱形的判定,概率的计算,熟练掌握概率计算公式是解题的关键.3、0<l≤2【分析】根据直线外一点与直线上各点连线的所有线段中,垂线段最短解答即可.【详解】解:∵点P为直线外一点,点A、B、C、D直线a上不同的点,∵直线外一点与直线上各点连线的所有线段中,垂线段最短∴点P到直线a的距离l小于等于2,故答案为:0<l≤2.【点睛】本题考查点到直线的距离、垂线段最短,熟知直线外一点与直线上各点连线的所有线段中,垂线段最短是解答的关键.4、4【分析】直接利用轴对称图形的性质结合题意即可得出答案.【详解】解:如图所示:都是符合题意的图形.故在网格中与ABC成轴对称的格点三角形一共有4个,故答案为:4.【点睛】此题主要考查了轴对称的性质,正确掌握轴对称图形的性质是解题关键.5、【分析】先解出不等式组,可得到不等式组的整数解为2,3,4,再由概率公式即可求解.【详解】解:不等式组,解不等式①,得:,解不等式②,得:,∴不等式组的解集为,不等式组的整数解为2,3,4,抽取的卡片上的数字为不等式组的解的概率.故答案为:【点睛】本题主要考查了计算概率,解一元一次不等式组,求出不等式组的整数解是解题的关键.6、【分析】根据概率的公式,即可求解【详解】解:根据题意得:这个球是白球的概率为故答案为:【点睛】本题考查了概率公式:熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键.7、0【分析】根据概率的公式,即可求解.【详解】解:∵2021年共有365天,∴翻出1月6日的概率为,∵2021年4月没有31日,∴翻出4月31日的概率为0.故答案为:;0【点睛】本题主要考查了计算概率,熟练掌握概率的公式是解题的关键.8、50°【分析】三角形的外角等于不相邻的两个内角和,同位角相等可得出,从而得到的值.【详解】解:如图故答案为:.【点睛】本题考察了三角形的外角,平行线的性质.解题的关键在于角度之间的转化和等量关系.9、04【分析】(1)朝上的数字相乘为7是不可能发生的,据此即可求解;(2)根据摸到白球的概率公式,列出方程求解即可.【详解】解:(1)朝上的数字相乘为7是不可能发生的.故“同时投掷两枚骰子,朝上的数字相乘为7”的概率是0.故答案为:0;(2)不透明的布袋中的小球除颜色不同外,其余均相同,共有10个小球,设其中白色小球x个,根据概率公式知:P(白色小球)==40%,解得:x=4.故答案为:4.【点睛】本题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10、##【分析】直接利用概率的意义分析得出答案.【详解】解:∵掷质地均匀硬币的试验,每次正面向上和向下的概率相同,∴再次掷出这枚硬币,正面朝上的概率是.故答案为:.【点睛】此题主要考查了概率的意义,正确把握概率的意义是解题关键.三、解答题1、的形状是等边三角形.【分析】利用平方数的非负性,求解a,b,c的关系,进而判断.【详解】解:∵,∴,∴a=b=c,∴是等边三角形.【点睛】本题主要是考查了三角形的分类,熟练掌握各类三角形的特点,例如三边相等为等边三角形,含的三角形为直角三角形等,这是解决此类题的关键.2、(1)可能发生,因为袋中有红球;(2)可能发生,因为袋中刚好有2个白球;(3)不可能发生,因为袋中只有2个白球,取不出3个白球.【分析】根据必然事件、不可能事件、随机事件的概念可判断它们分别属于那一种类别.【详解】(1)可能发生,因为袋中有红球;(2)可能发生,因为袋中刚好有2个白球;(3)不可能发生,因为袋中只有2个白球,取不出3个白球.【点睛】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3、(1);(2);(3)【分析】(1)由折叠的性质,得到,,然后由邻补角的定义,即可求出答案;(2)由折叠的性质,先求出,然后求出∠FEG的度数即可;(3)由折叠的性质,先求出,然后求出∠FEG的度数即可.【详解】解:(1)将∠AEF沿折痕EF翻折,点A落在点A'处;将∠DEG沿折痕EG翻折,点D落在点D'处,∴,,∴;(2)根据题意,则,,∵,∴,∴,∴;(3)根据题意,,,∵,∴,∴,∴;【点睛】本题考查了折叠的性质,邻补角的定义,解题的关键是熟练掌握折叠的性质,正确得到,.4、(1);(2)n=6【分析】(1)取出黑球的概率=1﹣取出红球的概率;(2)首先根据红球的个数和摸出红球的概率求得黑球的个数,然后根据概率公式列式求解即可.【详解】解:(1)P(取出黑球)=1﹣P(取出红球)=1﹣=;故答案为:;(2)设袋子中原有黑球x个,根据题意得:=,解得:x=18,经检验x=18是原方程的根,所以黑球有18个,∵又放入了n个黑球,根据题意得:,解得:n=6.经检验:符合题意【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势,估计概率,这个固定的近似值就是这个事件的概率.5、(1)见解析;(2)见解析;(3)见解析【分析】(1)根据两点之间线段最短即连接CD,则CD与线段AB交于点P,此时PC+PD最小;(2)根据图b可知∠B=45°,然后可在线段AB上找一点Q,使∠QCB=45°,则有CQ⊥AB,画出线段CQ;(3)根据网格图c可知∠A=45°,然后再格点中找到∠MCA=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 考古探掘工发展趋势水平考核试卷含答案
- 银行中层面试题目及答案
- 中国来料压铸件项目投资可行性研究报告
- 2025年法律职业资格考试易错集锦考试题及答案
- 2025年法律职业资格(客观题)历年真题摘选附带答案
- 分析纯红色氧化铅行业深度研究报告
- 必仙丸行业深度研究报告
- 中国远程监控系统项目投资可行性研究报告
- 电动工具串激电机行业深度研究报告
- 中国皮带式理瓶机项目投资可行性研究报告
- 适应性规划-洞察及研究
- 交通算法面试题目及答案
- 2025海康威视视频安全门禁系统用户手册
- 急性心包炎教学课件
- 白蚁防治施工过程中的安全管理
- 乡镇卫生院基本药物实施情况汇报
- 二人合租厂房合同协议书
- 左房肺静脉CTA扫描技术
- 成瘾机制干预策略-洞察及研究
- 文化旅游行业培训班心得体会
- 《经皮冠状动脉介入治疗指南(2025)》解读 3
评论
0/150
提交评论