




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽无为县襄安中学7年级下册数学期末考试章节测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、计算结果中,项的系数是()A.0 B.1 C.2 D.32、袋中有除颜色以外其余都相同的红球个,黄球个,摇匀后,从中任意摸出个球,记录颜色后放回、摇匀,再从中任意摸出个球,像这样有放回地先后摸球次,摸到的都是红球,则第次摸到红球的概率是()A. B. C. D.3、若与的乘积中不含x的一次项,则m的值为()A. B.0 C.2 D.44、在烧开水时,水温达到水就会沸腾,下表是小红同学做“观察水的沸腾”实验时所记录的变量时间和温度的数据:02468101214…3044587286100100100…在水烧开之前(即),温度与时间的关系式及因变量分别为()A., B.,C., D.,5、如图,三角尺的顶点在直线上,.现将三角尺绕点旋转,若旋转过程中顶点始终在直线的上方,设,,则下列说法中,正确的是()A.若,则 B.与一定互余C.与有可能互补 D.若增大,则一定减小6、一辆公共汽车从车站开出,加速行驶一段时间后开始匀速行驶.过了一段时间,汽车到达下一车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下图中近似地刻画出汽车在这段时间内的速度变化情况的是()A. B.C. D.7、一个三角形的两边长分别为5和2,若该三角形的第三边的长为偶数,则该三角形的第三边的长为()A.6 B.8 C.6或8 D.4或68、下列四个图形分别是节能、节水、绿色食品和低碳标志,其中轴对称图形是()A. B. C. D.9、计算的结果是()A. B. C. D.10、下列图形是轴对称图形的是()A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图,已知AB∥CD,∠1=55°,则∠2的度数为___.2、(﹣2021)0=_____.3、计算:________________.4、在圆周长公式中,随着的变化而变化,此问题中,______是常量,______和______是变量.5、随着各行各业有序复工复产,企业提倡员工实行“两点一线”上下班模式,减少不必要的聚集.小华爸爸早上开车以的平均速度行驶到达单位,下班按原路返回,若返回时平均速度为,则路上所用时间(单位:)与速度v(单位:)之间的关系可表示为________.6、如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有_________种.7、如图,点D、
E分别在ABC的AB、AC边上,沿DE将ADE翻折,点A的对应点为点,∠EC=α,∠DB=β,且α<β,则∠A等于________(用含α、β表示).8、某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启秒后,紧接着绿灯开启秒,再紧接着黄灯开启秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是______.9、计算:_______.10、如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l于点C,BD⊥l于点D,若AC=5,BD=3,则CD=_______.三、解答题(6小题,每小题10分,共计60分)1、如图,点O在直线AB上,过点O作射线OC,OP平分∠AOC,ON平分∠POB.∠AOC=38°,求∠CON的度数.2、如图,点D在AC上,BC,DE交于点F,,,.(1)求证:;(2)若,求∠CDE的度数.3、如图,自行车每节链条的长度为,交叉重叠部分的圆的直径为.()观察图形,填写下表:链条的节数/节链条的长度/()如果节链条的长度是,那么与之间的关系式是什么?()如果一辆某种型号自行车的链条(安装前)由节这样的链条组成,那么这辆自行车上的链条(安装后)总长度是多少?4、已知水池中有800立方米的水,每小时抽出50立方米.(1)写出剩余水的体积Q(立方米)与时间t(小时)之间的关系式及t的取值范围;(2)6小时后池中还有多少水?(3)几小时后,池中还有200立方米的水?5、计算:(1)计算:(﹣1)2010+()﹣2﹣(3.14﹣π)0;(2)计算:x(x+2y)﹣(x+1)2+2x.6、在如图所示的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长为1,已知四边形ABCD的四个顶点在格点上,利用格点和直尺按下列要求画图:(1)过点C画AD的平行线CE;(2)过点B画CD的垂线,垂足为F.-参考答案-一、单选题1、B【分析】根据多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加计算,最后根据要求求解即可.【详解】解:∵=,∴项的系数是1.故选:B.【点睛】本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.2、B【分析】根据概率的计算公式直接解答即可.【详解】解:∵袋中有除颜色以外其余都相同的红球个,黄球个共5个球,∴第次摸到红球的概率是,故选:B.【点睛】此题考查简单的概率计算,熟记概率计算公式并理解事件的意义是解题的关键.3、C【分析】直接利用多项式乘以多项式运算法则计算,再根据条件可得,再解得出答案.【详解】解:,乘积中不含的一次项,,解得:,故选:C.【点睛】本题主要考查了多项式乘以多项式运算,解题的关键是正确掌握相关运算法则.4、A【分析】由表知开始时温度为,每增加2分钟,温度增加,即每增加1分钟,温度增加,可得温度与时间的关系式.【详解】∵开始时温度为,每增加1分钟,温度增加∴温度与时间的关系式为:∵温度随时间的变化而变化∴因变量为故答案选:A【点睛】本题考查变量,关键是寻找两个变量之间的关系,同时注意自变量与因变量的区分.5、C【分析】根据题意,作出相应图形,然后结合角度计算对各个选项依次判断即可.【详解】解:A、当时,,选项错误;B、当点D在直线AB上方时,与互余,如图所示,当点D到如图所示位置时,与互补,选项错误;C、根据B选项证明可得:与可能互补,选项正确;D、如图所示,当点D到直线AB下方时,增大,也增大,选项错误;故选:C.【点睛】题目主要考查角度的计算及互余、互补的关系,根据题意,作出相应图形是解题关键.6、B【分析】横轴表示时间,纵轴表示速度,根据加速、匀速、减速时,速度的变化情况,进行选择.【详解】解:公共汽车经历:加速,匀速,减速到站,加速,匀速,加速:速度增加,匀速:速度保持不变,减速:速度下降,到站:速度为0.观察四个选项的图象:只有选项B符合题意;故选:B.【点睛】本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.7、D【分析】根据三角形两边之和大于第三边确定第三边的范围,根据题意计算即可.【详解】解:设三角形的第三边长为x,则5﹣2<x<5+2,即3<x<7,∵三角形的第三边是偶数,∴x=4或6,故选:D.【点睛】本题考查了三角形三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.8、C【分析】由题意依据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时也可以说这个图形关于这条直线(成轴)对称进行分析判断即可.【详解】解:A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.是轴对称图形,故本选项正确;D.不是轴对称图形,故本选项错误.故选:C.【点睛】本题考查轴对称图形的概念,注意掌握轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时互相重合.9、B【分析】根据单项式除法的运算法则解答即可.【详解】解:.故选B.【点睛】本题主要考查了单项式除法,把被除式与除式的系数和相同底数字母的幂分别相除,其结果作为商的因式.10、C【分析】根据轴对称图形的概念解答即可.【详解】A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.是轴对称图形,故本选项正确;D.不是轴对称图形,故本选项错误.故选C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题1、【分析】如图(见解析),先根据平行线的性质可得,再根据邻补角的定义即可得.【详解】解:如图,,,,故答案为:.【点睛】本题考查了平行线的性质、邻补角,熟练掌握平行线的性质是解题关键.2、1【分析】根据任何非0的数的零指数幂为1进行求解即可.【详解】解:,故答案为:1.【点睛】本题主要考查了零指数幂,解题的关键在于能够熟练掌握一个非0的数的零指数幂为1.3、【分析】根据同底数幂的乘法法则,底数不变,指数相加计算即可.【详解】∵,故答案为:.【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键.4、【分析】根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量,数值始终不变的量称为常量可直接得到答案.【详解】解:根据定义,数值发生变化的量称为变量,数值始终不变的量称为常量,所以在中,是常量,r和C是变量.故答案为:;r;C【点睛】本题考查常量和变量的定义,理解定义是解答此题的关键.5、【分析】根据路程=速度×时间,可计算出家与单位之间的总路程,再根据速度v=路程÷时间t即可得出答案.【详解】解:∵∴小华爸爸下班时路上所用时间(单位:)与速度v(单位:)之间的关系可表示为:.故答案为:.【点睛】本题考查的知识点是用关系式表示变量之间的关系,读懂题意,比较容易解答.6、3【分析】根据轴对称图形的定义:如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形,做答即可.【详解】解:如图所示,根据轴对称图形的定义可知,选择一个小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形,选择的位置可以有以下3种可能:故答案为:3.【点睛】本题考查轴对称图形,解题的关键是熟知轴对称的概念.7、【分析】根据翻转变换的性质得到,,根据三角形的外角的性质计算,即可得到答案.【详解】解:∵,∴由折叠的性质可知,,,设,∵,∴,解得:,∴,,故答案为:.【点睛】本题考查的是翻转变换的性质,三角形的外角的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8、【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】红灯亮秒,绿灯亮秒,黄灯亮秒,,故答案为:.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.9、故答案为:1【点睛】本题主要考查代数式的求值,解题的关键是掌握多项式乘多项式的法则及整体代入思想的运用.4.【分析】由积的乘方的逆运算进行计算,即可得到答案.【详解】解:;故答案为:.【点睛】本题考查了积的乘方的逆运算,解题的关键是掌握运算法则,正确的进行计算.10、2【分析】首先根据同角的余角相等得到∠A=∠BOD,然后利用AAS证明△ACO≌△ODB,根据全等三角形对应边相等得出AC=OD=5,OC=BD=3,根据线段之间的数量关系即可求出CD的长度.【详解】解:∵AC⊥l于点C,BD⊥l于点D,∴∠ACO=∠ODB=90°,∵∠AOB=90°,∴∠A=90°﹣∠AOC=∠BOD,在△ACO和△ODB中,,∴△ACO≌△ODB(AAS),∴AC=OD=5,OC=BD=3,∴CD=OD﹣OC=5﹣3=2,故答案为:2.【点睛】此题考查了全等三角形的性质和判定,同角的余角相等,解题的关键是根据题意证明△ACO≌△ODB.三、解答题1、61.5°【分析】由题意易得∠AOP=∠COP=∠AOC=19°,然后根据邻补角可得∠BOP=161°,进而根据角的和差关系可求解.【详解】解:∵OP平分∠AOC,∠AOC=38°,∴∠AOP=∠COP=∠AOC=×38°=19°,∴∠BOP=180°﹣∠AOP=180°﹣19°=161°,∵ON平分∠POB∴∠PON=∠BOP=×161°=80.5°,∴∠CON=∠PON﹣∠COP=80.5°﹣19°=61.5°.【点睛】本题主要考查角平分线的定义、邻补角及角的和差关系,熟练掌握角平分线的定义、邻补角及角的和差关系是解题的关键.2、(1)证明见解析;(2)∠CDE=20°.【分析】(1)由“SAS”可证△ABC≌△DBE;(2)由全等三角形的性质可得∠C=∠E,由三角形的外角性质可求解.(1)证明:∵∠ABD=∠CBE,∴∠ABD+∠DBC=∠CBE+∠DBC,即:∠ABC=∠DBE,在△ABC和△DBE中,,∴△ABC≌△DBE(SAS);(2)解:由(1)可知:△ABC≌△DBE,∴∠C=∠E,∵∠DFB=∠C+∠CDE,∠DFB=∠E+∠CBE,∴∠CDE=∠CBE,∵∠ABD=∠CBE=20°,∴∠CDE=20°.【点睛】本题考查了全等三角形的判定和性质,三角形的外角性质,证明三角形全等是解题的关键.3、();;;();()102cm.【分析】(1)首先根据题意并结合1节链条的图形可得每节链条两个圆之间的距离为(2.5-0.8×2)cm;接下来再结合图形可得到2节链条的长度为2.5+0.9+0.8,按此规律,自己写出3节链条、4节链条的长度,再进行填表即可;(2)结合(1)中各节链条长度的表达式,则不难得到y与x之间的关系式了;(3)将x=60代入(2)中的关系式中,可求得y值,此时,注意:自行车上的链条为环形,在展直的基础上还要缩短0.8cm.【详解】解:(1)每节链条两个圆之间的距离为:2.5-0.8×2=0.9,观察图形可得,2节链条的长度为2.5+0.9+0.8=4.2;3节链条的长度为4.2+0.9+0.8=5.9;4节链条的长度为5.9+0.9+0.8=7.6;填表如下:链条的节数/节234…链条的长度/cm4.25.97.6…(2)1节链条、2节链条、3节链条、4节链条的长度分别可表示为:2.5=0.8+1.7×1,4.2=0.8+1.7×2,5.9=0.8+1.7×3,7.6=0.8+1.9×4=7.6,故y与x之间的关系为:y=1.7x+0.8;(3)当x=60时,y=1.7×60+0.8=102.8,因为自行车上的链条为环形,在展直的基础上还要缩短0.8cm,故自行车60节链条的长度为102.8-0.8=102(cm),所以这辆自行车上的链条(安装后)总长度是102cm.【点睛】本题主要考查了函数关系式,根据题意得出n节链条的长度与每节长度之间的关系是解决问题的关键.4、(1)Q=800-50t(0≤t≤16);(2)6小时后,池中还剩500立方米的水;(3)12小时后,池中还有200立方米的水.【分析】(1)根据函数的概念和所给的已知条件即可列出关系式,Q=800-50t;(2)根据(1)中的函数关系式,将t=6代入即可得出池中的水;(3)结合已知,可知Q=200,代入函数关系式中即可得出时间t.【详解】(1)由已知条件知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 豫剧花木兰课件
- 2025年度数据中心内部设备安装合同协议
- 2025版汽车维修厂维修车间维修技师劳动合同范本
- 2025年度个人信用贷款担保及审核合同
- 2025版跨国企业外教引进与海外员工语言提升服务合同
- 2025年车辆抵押借款合同关键条款分析
- 2025代持股权转让与公司战略调整合作协议
- 2025大型设备运输合同范本
- 2025年版云南省劳动合同范本下载
- 红绿灯课件教学课件
- 加油、加气、充电综合站项目可行性研究报告
- 2025保密协议范本:物流行业货物信息保密
- 塔机拆卸合同范本
- 2024-2025学年广东省深圳市南山区四年级(下)期末数学试卷
- 《煤矿安全规程(2025版)》知识培训
- 2025秋数学(新)人教五年级(上)第1课时 小数乘整数
- 半导体行业面试问题及答案解析
- 《数字技术应用基础模块》技工中职全套教学课件
- 房屋拆除专项施工方案(3篇)
- AutoCAD电气工程制图 课件 项目1 低压配电柜的绘制与识图
- 2025至2030年中国绿色船舶行业发展前景预测及投资方向研究报告
评论
0/150
提交评论