版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省永安市中考数学真题分类(平行线的证明)汇编专题训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如图,在中,,,,,连接BC,CD,则的度数是()A.45° B.50° C.55° D.80°2、如图,点E在的延长线上,下列条件不能判断的是(
)A. B. C. D.3、如下图,在下列条件中,能判定AB//CD的是(
)A.∠1=∠3 B.∠2=∠3 C.∠1=∠4 D.∠3=∠44、如图,,的角平分线交于点,若,,则的度数(
)A. B. C. D.5、将一副三角板的直角顶点重合按如图放置,小明得到下列结论:①如果∠2=30°,则AC∥DE;②∠BAE+∠CAD=180°;③如果BC∥AD,则∠2=30°;④如果∠CAD=150°,则∠4=∠C.其中正确的结论有()A.①② B.①②③ C.①③④ D.①②④6、如图,是某企业甲、乙两位员工的能力测试结果的网状图,以O为圆心的五个同心圆分别代表能力水平的五个等级由低到高分别赋分1至5分,由原点出发的五条线段分别指向能力水平的五个维度,网状图能够更加直观的描述测试者的优势和不足,观察图形,有以下几个推断:①甲和乙的动手操作能力都很强;②缺少探索学习的能力是甲自身的不足;③与甲相比乙需要加强与他人的沟通合作能力;④乙的综合评分比甲要高.其中合理的是(
)A.①③ B.②④ C.①②③ D.①②③④7、下列命题正确的是
()A.三角形的外角大于它的内角B.三角形的一个外角等于它的两个内角C.三角形的一个内角小于与它不相邻的外角D.三角形的外角和是180°8、一把直尺和一块三角板(含、角)如图所示摆放,直尺一边与三角板的两直角边分别交于点和点,另一边与三角板的两直角边分别交于点和点,且,那么的大小为()A. B. C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,将三角形纸片ABC按如图方式折叠:折痕分别为DC和DE,点A与BC边上的点G重合,点B与DG延长线上的点F重合.若满足∠ACB=40°,则∠CEF=_______度.2、如图,则∠A+∠B+∠C+∠D+∠E的度数是__.3、如图,直线a,b与直线c,d相交,若∠1=∠2,∠3=70°,则∠4的度数是;4、如图,四边形ABCD中,点M,N分别在AB,BC上,将沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=___°.5、如图,下列条件:①∠1=∠3,②∠2+∠4=180°,③∠4=∠5,④∠2=∠3,⑤∠6=∠2+∠3中能判断直线的有_________(只填序号).6、如图,把一张直角△ABC纸片沿DE折叠,已知∠1=68°,则∠2的度数为_______.7、如图,给出下列条件:①;②;③;④;⑤.其中,一定能判定∥的条件有_____________(填写所有正确的序号).三、解答题(7小题,每小题10分,共计70分)1、如图,在△ABC中,D是BC边上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:△ABE≌△DBE,(2)若∠A=100°,∠C=50°,求∠AEB的度数.2、已知:如图,.求证:.分析:如图,欲证,只要证______.证明:,(已知)又,(
)__________.(
).(__________,____________)3、如图,在四边形中,,,平分交于点,交的延长线于点.(1)求的大小;(2)若,求的大小.4、如图,在△ABC中,∠A=55°,∠ABD=32°,∠ACB=70°,且CE平分∠ACB,求∠DEC的度数.5、如图,直线DE、FM,分别交的两边于N、G,P、Q,若吗?如果平行请说明理由.6、已知:如图1,点在四边形的边的延长线上,与交于点,,.(1)求证:ADBC;(2)如图2,若点在线段上,点在线段上,且,平分,,求的度数.7、如图:∠1+∠2=180°,∠C=∠D,则∠A=∠F吗?请说明理由.-参考答案-一、单选题1、B【解析】【分析】连接AC并延长交EF于点M.由平行线的性质得,,再由等量代换得,先求出即可求出.【详解】解:连接AC并延长交EF于点M.,,,,,,,故选B.【考点】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型.2、D【解析】【分析】直接利用平行线的判定方法分别判断得出答案.【详解】解:A、当∠5=∠B时,AB∥CD,不合题意;B、当∠1=∠2时,AB∥CD,不合题意;C、当∠B+∠BCD=180°时,AB∥CD,不合题意;D、当∠3=∠4时,AD∥CB,符合题意;故选:D.【考点】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.3、C【解析】【详解】根据平行线的判定,可由∠2=∠3,根据内错角相等,两直线平行,得到AD∥BC,由∠1=∠4,得到AB∥CD.故选C.4、A【解析】【分析】法一:延长PC交BD于E,设AC、PB交于F,根据三角形的内角和定理得到∠A+∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°推出∠P+∠PCF=∠A+∠ABF,根据三角形的外角性质得到∠P+∠PBE=∠PED,推出∠P+∠PBE=∠PCD−∠D,根据PB、PC是角平分线得到∠PCF=∠PCD,∠ABF=∠PBE,推出2∠P=∠A−∠D,代入即可求出∠P.法二:延长DC,与AB交于点E.设AC与BP相交于O,则∠AOB=∠POC,可得∠P+∠ACD=∠A+∠ABD,代入计算即可.【详解】解:法一:延长PC交BD于E,设AC、PB交于F,∵∠A+∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°,∵∠AFB=∠PFC,∴∠P+∠PCF=∠A+∠ABF,∵∠P+∠PBE=∠PED,∠PED=∠PCD−∠D,∴∠P+∠PBE=∠PCD−∠D,∴2∠P+∠PCF+∠PBE=∠A−∠D+∠ABF+∠PCD,∵PB、PC是角平分线∴∠PCF=∠PCD,∠ABF=∠PBE,∴2∠P=∠A−∠D∵∠A=48°,∠D=10°,∴∠P=19°.法二:延长DC,与AB交于点E.∵∠ACD是△ACE的外角,∠A=48°,∴∠ACD=∠A+∠AEC=48°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=48°+∠AEC=48°+∠ABD+10°,整理得∠ACD−∠ABD=58°.设AC与BP相交于O,则∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=48°−(∠ACD−∠ABD)=19°.故选A.【考点】本题主要考查对三角形的内角和定理,三角形的外角性质,对顶角的性质,角平分线的性质等知识点的理解和掌握,能熟练地运用这些性质进行计算是解此题的关键.5、D【解析】【分析】根据平行线的性质和判定和三角形内角和定理逐个判断即可.【详解】解:∵∠2=30°,∠CAB=90°,∴∠1=60°,∵∠E=60°,∴∠1=∠E,∴AC∥DE,故①正确;∵∠CAB=∠DAE=90°,∴∠BAE+∠CAD=90°-∠1+90°+∠1=180°,故②正确;∵BC∥AD,∠B=45°,∴∠3=∠B=45°,∵∠2+∠3=∠DAE=90°,∴∠2=45°,故③错误;∵∠CAD=150°,∠BAE+∠CAD=180°,∴∠BAE=30°,∵∠E=60°,∴∠BOE=∠BAE+∠E=90°,∴∠4+∠B=90°,
∵∠B=45°,∴∠4=45°,∵∠C=45°,∴∠4=∠C,故④正确;所以其中正确的结论有①②④.故选:D.【考点】本题考查了三角形的内角和定理和平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.6、D【解析】【分析】根据甲、乙两位员工的能力测试结果的网状图一一判断即可得到答案;【详解】解:因为甲、乙两位员工的动手操作能力均是5分,故甲乙两人的动手操作能力都很强,故①正确;因为甲的探索学习的能力是1分,故缺少探索学习的能力是甲自身的不足,故②正确;甲的与他人的沟通合作能力是5分,乙的与他人的沟通合作能力是3分,故与甲相比乙需要加强与他人的沟通合作能力,故③正确;乙的综合评分是:3+4+4+5+5=22分,甲的综合评分是:1+4+4+5+5=19分,故乙的综合评分比甲要高,故④正确;故选:D;【考点】本题主要考查图象信息题,能从图象上获取相关的信息是解题的关键;7、C【解析】【详解】【分析】根据三角形的外角性质:①三角形的外角和为360°;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于和它不相邻的任何一个内角,分别进行分析即可.【详解】A、三角形的外角大于与它不相邻的内角,故A选项错误;B、三角形的一个外角等于与它不相邻的两个内角之和,故B选项错误;C、三角形的一个内角小于和它不相邻的任何一个外角,故C选项正确;D、三角形的外角和是360°,故D选项错误,故选C.【考点】本题主要考查了三角形的外角的性质,关键是熟练掌握性质定理.8、B【解析】【分析】先利用三角形外角性质得到∠FDE=∠C+∠CED=140°,然后根据平行线的性质得到∠BFA的度数.【详解】,∵,∴.故选B.【考点】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.二、填空题1、40【解析】【详解】由折叠可得∠EDC=90°,∠BED=∠FED,由角平分线和三角形内角和得∠DEC=70°,再利用三角形外角的性质可得答案.【解答】解:由折叠可得:∠EDF=,,∵∠BDF+∠GDA=180°,∴∠EDF+∠GDC=90°,∵∠ACB=40°,∴∠GCD=40÷2=20°,∴∠DEC=180°﹣90°﹣20°=70°,由折叠可得:∠BED=∠DEF=70°+∠CEF,由三角形外角的性质可得,∠BED=90°+20°=110°,∴70°+∠CEF=110°,即∠CEF=40°.故答案为:40.【考点】本题考查图形的折叠,熟知折叠前后图形的形状和大小相等、得到∠BED=∠DEF并利用三角形内角和是解本题的关键,属于常见题型.2、180°【解析】【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠4=∠A+∠2,∠2=∠D+∠C,进而利用三角形的内角和定理求解.【详解】解:如图可知:∵∠4是三角形的外角,∴∠4=∠A+∠2,同理∠2也是三角形的外角,∴∠2=∠D+∠C,在△BEG中,∵∠B+∠E+∠4=180°,∴∠B+∠E+∠A+∠D+∠C=180°.故答案为:180°.【考点】本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.3、110°【解析】【详解】试题解析:∵∠1=∠2,∴ab,∴∠3=∠5,故答案为点睛:同位角相等,两直线平行.4、95【解析】【详解】∵MF//AD,FN//DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°.∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°.在△BMN中,∠B=180°-(∠BMN+∠BNM)=180°-(50°+35°)=180°-85°=95°.故答案为:955、①②③⑤【解析】【详解】分析:根据平行线的判定定理对各小题进行逐一判断即可.详解:①∵∠1=∠3,∴l1∥l2,故本小题正确;②∵,∴l1∥l2,故本小题正确;③∵∠4=∠5,∴l1∥l2,故本小题正确;④∠2=∠3不能判定l1∥l2,故本小题错误;⑤∵∠6=∠2+∠3,∴l1∥l2,故本小题正确.故答案为①②③⑤点睛:考查平行线的判定,掌握判定方法是解题的关键.6、46°【解析】【分析】由题意得∠C′=90°,由折叠得∠CDE=∠C′DE,那么∠CDE=180°﹣∠1=112°,故∠C′DE=∠C′DA+∠1=112°,进而推断出∠C′DA=112°﹣68°=44°,从而求得∠2.【详解】解:由题意得:∠C′=90°,由折叠得∠CDE=∠C′DE.∵∠1=68°,∴∠CDE=180°﹣∠1=112°.∴∠C′DE=∠C′DA+∠1=112°.∴∠C′DA=112°﹣68°=44°.∴∠2=180°﹣∠C′﹣∠C′DA=46°.故答案为:46°.【考点】本题考查了三角形折叠问题和三角形内角和,解题关键是根据折叠得出角相等,利用三角形内角和求解.7、①③④【解析】【分析】根据平行线的判定方法对各小题判断即可解答.【详解】①∵,∴∥(同旁内角互补,两直线平行),正确;②∵,∴∥,错误;③∵,∴∥(内错角相等,两直线平行),正确;④∵,∴∥(同位角相等,两直线平行),正确;⑤不能证明∥,错误,故答案为:①③④.【考点】本题考查了平行线的判定,熟练掌握平行线的判定方法是解答的关键.三、解答题1、(1)见解析(2)∠AEB=65°【解析】【分析】(1)由角平分线可得∠ABE=∠DBE,再证△ABE≌△DBE即可;(2)根据三角形内角和求出∠ABC=30°,再根据角平分线求出∠ABE=15°,根据三角形内角和可求.(1)证明:∵BE平分∠ABC,∴∠ABE=∠DBE,在△ABE和△DBE中,,∴△ABE≌△DBE(SAS),(2)解:∵∠A=100°,∠C=50°,∴∠ABC=30°,∵BE平分∠ABC,∴∠ABE=∠DBE=∠ABC=15°,在△ABE中,∠AEB=180°﹣∠A﹣∠ABE=180°﹣100°﹣15°=65°.【考点】本题考查了全等三角形的判定、角平分线的定义以及三角形内角和,掌握三角形全等的判定和运用三角形内角和求角度是解题的关键.2、;对顶角相等;;等量代换;同位角相等,两直线平行.【解析】【分析】根据等量代换和同位角相等,两直线平行即可得出结果.【详解】分析:如图,欲证,只要证.证明:,(已知)又,(对顶角相等).(等量代换).(同位角相等,两直线平行)【考点】本题主要考查平行线的判定,属于基础题,掌握平行线的判定定理是解题的关键.3、(1)25°(2)23°【解析】【分析】(1)先由平行线的性质求出∠ABC=180°-∠BCD=180°-130°=50°,再根据解平分线的定义求解即可;∠BAD=180°-∠ADC=180°-48°=132°,再根据三角形内角和定理求出(2)先由平行线的性质求出∠AEB=180°-∠BAD-∠ABE=23°,最后由对顶角性质得解.(1)解:∵,∴∠ABC+∠BCD=180°,∴∠ABC=180°-∠BCD=180°-130°=50°,∵平分∴∠ABE=∠ABC==25°;(2)解:∵,∴∠BAD+∠ADC=180°,∴∠BAD=180°-∠ADC=180°-48°=132°,∵∠BAD+∠ABE+∠AEB=180°,又由(1)知:∠ABE=25°,∴∠AEB=180°-∠BAD-∠ABE=180°-132°-25°=23°,∴∠DEF=∠AEB=23°.【考点】本题考查平行线的性质,角平分线定义,三角形内角和定理,对顶角性质,熟练掌握平行线的性质是解题的关键.4、∠DEC=58°.【解析】【分析】先根据∠A=55°,∠ACB=70°得出∠ABC的度数,再由∠ABD=32°得出∠CBD的度数,根据CE平分∠ACB得出∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论