版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学上册《全等三角形》定向攻克考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,在△ABC中,AD是BC边上的高,∠BAF=∠CAG=90°,AB=AF,AC=AG,连接FG,交DA的延长线于点E,连接BG,CF,则下列结论:①BG=CF;②BG⊥CF;③∠EAF=∠ABC;④EF=EG,其中正确的有(
)A.①②③ B.①②④ C.①③④ D.①②③④2、如图,Rt△ACB中,∠ACB=90°,△ACB的角平分线AD,BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②AD=PF+PH;③DH平分∠CDE;④S四边形ABDE=S△ABP;⑤S△APH=S△ADE,其中正确的结论有(
)个A.2 B.3 C.4 D.53、如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()A.①②③ B.①②④ C.①③④ D.①②③④4、如图,已知是的角平分线,是的垂直平分线,,,则的长为(
)A.6 B.5 C.4 D.5、如图,已知,下面甲、乙、丙、丁四个三角形中,与全等的是(
)A.甲 B.乙 C.丙 D.丁第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,AD,BE是的两条高线,只需添加一个条件即可证明(不添加其它字母及辅助线),这个条件可以是______(写出一个即可).2、如图,△ABC≌△DBE,△ABC的周长为30,AB=9,BE=8,则AC的长是__.3、如图,在四边形中,,,,点在线段上以的速度由点向点运动,同时,点在线段上由点向点运动,设运动时间为,当与以,,为顶点的三角形全等时,点的运动速度为______.4、如图,两根旗杆间相距20米,某人从点B沿BA走向点A,一段时间后他到达点M,此时他分别仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆BD的高为12米,该人的运动速度为2米/秒,则这个人运动到点M所用时间是__________秒.5、△ABC中,∠BAC:∠ACB:∠ABC=4:3:2,且△ABC≌△DEF,则∠DEF=______度.三、解答题(5小题,每小题10分,共计50分)1、中,,,点是边上的一个动点,连接,过点作于点.(1)如图1,分别延长,相交于点,求证:;(2)如图2,若平分,,求的长;(3)如图3,是延长线上一点,平分,试探究,,之间的数量关系并说明理由.2、如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.3、已知:如图,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°.(1)求证:AC=BD;(2)求∠APB的度数.4、如图,在中,,点D在线段BC上运动(D不与B、C重合),连接AD,作,DE交线段AC于E.(1)点D从B向C运动时,逐渐变__________(填“大”或“小”),但与的度数和始终是__________度.(2)当DC的长度是多少时,,并说明理由.5、如图,等腰三角形中,,.作于点,将线段绕着点顺时针旋转角后得到线段,连接.(1)求证:;(2)延长线段,交线段于点.求的度数(用含有的式子表示).-参考答案-一、单选题1、D【解析】【分析】证得△CAF≌△GAB(SAS),从而推得①正确;利用△CAF≌△GAB及三角形内角和与对顶角,可判断②正确;证明△AFM≌△BAD(AAS),得出FM=AD,∠FAM=∠ABD,则③正确,同理△ANG≌△CDA,得出NG=AD,则FM=NG,证明△FME≌△GNE(AAS).可得出结论④正确.【详解】解:∵∠BAF=∠CAG=90°,∴∠BAF+∠BAC=∠CAG+∠BAC,即∠CAF=∠GAB,又∵AB=AF=AC=AG,∴△CAF≌△GAB(SAS),∴BG=CF,故①正确;∵△FAC≌△BAG,∴∠FCA=∠BGA,又∵BC与AG所交的对顶角相等,∴BG与FC所交角等于∠GAC,即等于90°,∴BG⊥CF,故②正确;过点F作FM⊥AE于点M,过点G作GN⊥AE交AE的延长线于点N,∵∠FMA=∠FAB=∠ADB=90°,∴∠FAM+∠BAD=90°,∠FAM+∠AFM=90°,∴∠BAD=∠AFM,又∵AF=AB,∴△AFM≌△BAD(AAS),∴FM=AD,∠FAM=∠ABD,故③正确,同理△ANG≌△CDA,∴NG=AD,∴FM=NG,∵FM⊥AE,NG⊥AE,∴∠FME=∠ENG=90°,∵∠AEF=∠NEG,∴△FME≌△GNE(AAS).∴EF=EG.故④正确.故选:D.【考点】本题综合考查了全等三角形的判定与性质及等腰三角形的三线合一性质与互余、对顶角,三角形内角和等几何基础知识.熟练掌握全等三角形的判定与性质是解题的关键.2、B【解析】【分析】①正确.利用三角形内角和定理以及角平分线的定义即可解决问题.②正确.证明△ABP≌△FBP,推出PA=PF,再证明△APH≌△FPD,推出PH=PD即可解决问题.③错误.利用反证法,假设成立,推出矛盾即可.④错误,可以证明S四边形ABDE=2S△ABP.⑤正确.由DH∥PE,利用等高模型解决问题即可.【详解】解:在△ABC中,AD、BE分别平分∠BAC、∠ABC∵∠ACB=90°∴∠A+∠B=90°又∵AD、BE分别平分∠BAC、∠ABC∴∠BAD+∠ABE=(∠A+∠B)=45°∴∠APB=135°,故①正确∴∠BPD=45°又∵PF⊥AD∴∠FPB=90°+45°=135°∴∠APB=∠FPB又∵∠ABP=∠FBPBP=BP∴△ABP≌△FBP(ASA)∴∠BAP=∠BFP,AB=FB,PA=PF在△APH和△FPD中∴△APH≌△FPD(ASA)∴PH=PD∴AD=AP+PD=PF+PH.故②正确∵△ABP≌△FBP,△APH≌△FPD∴S△APB=S△FPB,S△APH=S△FPD,PH=PD∵∠HPD=90°∴∠HDP=∠DHP=45°=∠BPD∴HD∥EP∴S△EPH=S△EPD∴S△APH=S△AED,故⑤正确∵S四边形ABDE=S△ABP+S△AEP+S△EPD+S△PBD=S△ABP+(S△AEP+S△EPH)+S△PBD=S△ABP+S△APH+S△PBD=S△ABP+S△FPD+S△PBD=S△ABP+S△FBP=2S△ABP,故④不正确若DH平分∠CDE,则∠CDH=∠EDH∵DH∥BE∴∠CDH=∠CBE=∠ABE∴∠CDE=∠ABC∴DE∥AB,这个显然与条件矛盾,故③错误故选B.【考点】本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理,三角形的面积等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.3、D【解析】【分析】根据三角形内角和定理以及角平分线定义判断①;根据全等三角形的判定和性质判断②③;根据角平分线的判定与性质判断④.【详解】解:在△ABC中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠BAC+∠ABC)=(180°-∠ACB)=(180°-90°)=45°,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP(ASA),∴∠BAP=∠BFP,AB=FB,PA=PF,故②正确.在△APH和△FPD中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP,PA=PF,∴△APH≌△FPD(ASA),∴PH=PD,故③正确.连接CP,如下图所示:∵△ABC的角平分线AD、BE相交于点P,∴点P到AB、AC的距离相等,点P到AB、BC的距离相等,∴点P到BC、AC的距离相等,∴点P在∠ACB的平分线上,∴CP平分∠ACB,故④正确,综上所述,①②③④均正确,故选:D.【考点】本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理.掌握相关性质是解题的关键.4、D【解析】【分析】根据ED是BC的垂直平分线、BD是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE=3,故选D.【考点】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.5、B【解析】【分析】根据全等三角形的判定定理逐判定即可.【详解】解:A.△ABC和甲所示三角形只有一边一角对应相等,无法判定它们全等,故本选项不符合题意;B.△ABC和乙所示三角形有两边及其夹角对应相等,根据SAS可判定它们全等,故本选项符合题意;C.△ABC和丙所示三角形有两边一角相等,但不是对应的两边一角,无法判定它们全等,故本选项不符合题意;;D.△ABC和丁所示三角形有两角对应相等,有一边相等,但相等边不是两角的夹边,所以两角一边不是对应相等,无法判定它们全等,故本选项不符合题意;;故选:B.二、填空题1、(答案不唯一)【解析】【分析】根据已知条件可知,故只要添加一条边相等即可证明.【详解】解:添加,AD,BE是的两条高线,,在与中,.故答案为:(答案不唯一).【考点】本题考查了三角形全等的判定,掌握三角形全等的判定是解题的关键.2、13【解析】【分析】根据全等三角形的性质求出BC,根据三角形的周长公式计算,得到答案.【详解】解:∵△ABC≌△DBE,BE=8,∴BC=BE=8,∵△ABC的周长为30,∴AB+AC+BC=30,∴AC=30﹣AB﹣BC=13,故答案为:13.【考点】此题主要考查全等三角形的性质,解题的关键是熟知全等三角形的性质.3、1或【解析】【分析】设点的运动速度为,由题意可得,与以,,为顶点的三角形全等时分为两种情况:,再利用全等三角形的性质求解即可.【详解】解:设点的运动速度为,由题意可得,∵∴与以,,为顶点的三角形全等时可分为两种情况:①当时,∴,∴∴∴此时点的运动速度为;②当时,,∴,∴,此时点的运动速度为,故答案为:1或.【考点】本题主要考查三角形全等的性质,掌握全等三角形的对应边相等是解题的关键,注意分情况讨论.4、4【解析】【分析】根据角的等量代换求出,便可证出,利用全等的性质得到,从而求出的长,再通过时间=路程÷速度列式计算即可.【详解】解:根据题意可得:,,,∵∴又∵∴∴在和中∴∴∴∴时间=故答案为4【考点】本题主要考查了全等三角形的判定与性质,利用角的等量代换找出三角形全等的条件是解题的关键.5、40【解析】【分析】设∠BAC为4x,则∠ACB为3x,∠ABC为2x,由∠BAC+∠ACB+∠ABC=180°得4x+3x+2x=180.【详解】解:设∠BAC为4x,则∠ACB为3x,∠ABC为2x∵∠BAC+∠ACB+∠ABC=180°∴4x+3x+2x=180,解得x=20∴∠ABC=2x=40°∵△ABC≌△DEF∴∠DEF=∠ABC=40°.故答案为40【考点】考核知识点:全等三角形性质.理解全等三角形性质是关键.三、解答题1、(1)见解析(2)(3),理由见解析【解析】【分析】(1)欲证明BE=AD,只要证明即可;(2)如图2,分别延长BF,AC交于点E,证,可求;(3)如图3中,分别延长BF,AC交于点E,由(1)可得△ACD≌△BCE,得CD=CE,再证可得结论.(1)解:(1)∵,∴,又∵,∴.在和中,∴.∴.(2)解:如图2,延长,交于点.∵,∴,∵平分,∴.在和中,∴.∴.由(1)可得,.∴.(3)解:.理由:如图3,延长,交于点.由(1)可得,,∴.∵,∴,∵平分,∴.在和中,∴.∴.∵.∴.【考点】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.2、详见解析【解析】【分析】(1)由角平分线定义可证△BCE≌△DCF(HL);(2)先证Rt△FAC≌Rt△EAC,得AF=AE,由(1)可得AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.【详解】(1)证明:∵AC是角平分线,CE⊥AB于E,CF⊥AD于F,∴CE=CF,∠F=∠CEB=90°,在Rt△BCE和Rt△DCF中,∴△BCE≌△DCF;(2)解:∵CE⊥AB于E,CF⊥AD于F,∴∠F=∠CEA=90°,在Rt△FAC和Rt△EAC中,,∴Rt△FAC≌Rt△EAC,∴AF=AE,∵△BCE≌△DCF,∴BE=DF,∴AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.【考点】本题考查了全等三角形的判定、性质和角平分线定义,注意:全等三角形的对应角相等,对应边相等,直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.3、(1)见解析;(2)【解析】【分析】(1)通过证明,即可求证;(2)利用三角形外角的性质可得,由(1)可得,从而得到,利用三角形内角和的性质即可求解.(1)证明:∵,∴,又∵OA=OB,OC=OD,∴,∴;(2)解:由(1)可得,由三角形外角的性质可得∴,∴,【考点】此题考查了全等三角形的判定与性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社区科普共建协议书
- 社区房产协议书模板
- 磷化前处理合同范本
- 电泳质量协议书范本
- 民族成份变更申请书模板
- 石子场加工合同范本
- 租赁合同内保密协议
- 笔记本制作合同范本
- 租机械押金合同范本
- 石廊亭购销合同范本
- 催泪喷射器的使用课件
- 2025江苏海安市城建开发投资集团有限公司招聘笔试及综合笔试历年参考题库附带答案详解
- 印刷周期管理办法
- 2025年中国北京市幼儿园行业市场前景预测及投资价值评估分析报告
- BSCI社会责任验厂培训课件
- 国家开放大学《园林树木学》形考任务1-4参考答案
- (完整)公共基础知识题库及答案
- LY/T 3419-2024自然教育评估规范
- 2025年读者出版传媒股份有限公司招聘笔试参考题库含答案解析
- Unit5 we're family单元整体(说课稿)-2024-2025学年外研版(三起)(2024)英语三年级上册
- 创伤性凝血病救治
评论
0/150
提交评论