版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
华东师大版8年级下册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、在平面直角坐标系xOy中,点A(0,2),B(a,0),C(m,n)(n>0).若△ABC是等腰直角三角形,且AB=BC,当0<a<1时,点C的横坐标m的取值范围是()A.0<m<2 B.2<m<3 C.m<3 D.m>32、如图,在正方形ABCD中,,点E在对角线AC上,若,则CDE的面积为()A.3 B.4 C.5 D.63、若点P位于平面直角坐标系第四象限,且点P到x轴的距离是1,到y轴的距离是2,则点P的坐标为()A. B. C. D.4、如图,平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC等于()A.1 B.2 C.3 D.45、下列图像中表示是的函数的有几个()A.1个 B.2个 C.3个 D.4个6、使分式等于0的x的值是()A.1 B. C. D.不存在7、数学课上,老师要同学们判断一个四边形门框是否为矩形.下面是某合作小组4位同学拟定的方案,其中正确的是()A.测量对角线是否互相平分 B.测量一组对角是否都为直角C.测量对角线长是否相等 D.测量3个角是否为直角8、若整数a使得关于x的分式方程有正整数解,且使关于y的不等式组至少有4个整数解,那么符合条件的所有整数a的和为().A.13 B.9 C.3 D.10第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、将一次函数的图像向上平移5个单位后,所得图像的函数表达式为______.2、原点的坐标为______,第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-),任何一个在x轴上的点的纵坐标都为0,记作______;任何一个在y轴上的点的横坐标都为0,记作______.3、如图,E是正方形ABCD的对角线BD上一点,连接CE,过点E作,垂足为点F.若,,则正方形ABCD的面积为______.4、如果点B与点C的横坐标相同,纵坐标不同,那么直线与y轴的关系为__________.5、如图,在菱形ABCD中,点M、N分别交于AB、CD上,AM=CN,MN与AC交于点O,连接BO.若∠OBC=62°,则∠DAC为____°.6、如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=8,BC=12,则EF的长为__________.7、如图,将正方形置于平面直角坐标系中,其中,,边在轴上,直线与正方形的边有两个交点、,当时,的取值范围是__.三、解答题(7小题,每小题10分,共计70分)1、已知点E、F分别为平行四边形ABCD的边AD、BC的中点,求证:四边形EBFD为平行四边形.2、如图,菱形OABC的点B在y轴上,点C坐标为(4,3),双曲线的图象经过点A.(1)菱形OABC的边长为;(2)求双曲线的函数关系式;(3)①点B关于点O的对称点为D点,过D作直线l垂直于x轴,点P是直线l上一个动点,点E在双曲线上,当P、E、A、B四点构成平行四边形时,求点E的坐标;②将点P绕点A逆时针旋转90°得点Q,当点Q落在双曲线上时,求点Q的坐标.3、探索发现如图,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且,PE交CD于F.(1)求证:;(2)____________°.(3)拓展延伸如图,在菱形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且,,连接CE,请判断线段AP与线段CE的数量关系,并说明理由.4、请根据学习“一次函数”时积累的经验和方研究函数的图象和性质,并解决问题.(1)填空:①当x=0时,;②当x>0时,;③当x<0时,;(2)在平面直角坐标系中作出函数的图象;(3)观察函数图象,写出关于这个函数的两条结论;(4)进一步探究函数图象发现:①函数图象与轴有个交点,方程有个解;②方程有个解;③若关于的方程无解,则的取值范围是.5、如图,已知函数y1=x+1的图像与y轴交于点A,一次函数y2=kx+b的图像经过点B(0,-1),并且与x轴以及y1=x+1的图像分别交于点C、D,点D的横坐标为1.(1)求y2函数表达式;(2)在y轴上是否存在这样的点P,使得以点P、B、D为顶点的三角形是等腰三角形.如果存在,求出点P坐标;如果不存在,说明理由.(3)若一次函数y3=mx+n的图像经过点D,且将四边形AOCD的面积分成1:2.求函数y3=mx+n的表达式.6、为了纪念中国人民志愿军抗美援朝71周年,近两年涌现了很多相关题材的电影作品,《长津湖》和《金刚川》正是其中优秀的代表.为了解学生对这两部作品的评价,某调查小组从该校观看过这两部电影的学生中各随机抽取了20名学生对这两部作品分别进行评分(满分10分),并通过整理和分析,给出了部分信息.《长津湖》得分情况:7,8,7,10,7,6,9,9,10,10,8,9,8,6,6,10,9,7,9,9抽取的学生对两部作品分别打分的平均数,众数和中位数平均数众数中位数《长津湖》《金刚川》根据以上信息,解答下列问题:(1)直接写出上述图表中的,,的值;(2)根据上述数据,你认为该校观看过这两部作品的学生对哪部作品评价更高?请说明理由(写出一条理由即可);(3)若该校有2000名学生观看过这两部影片,若他们都对这两部作品进行评分,你认为这两部作品一共可得到多少个满分?7、如图,中,,,是中点,是线段上一动点,连接,设,两点间的距离为,,两点间的距离为.(当点与点重合时,的值为小东根据学习一次函数的经验,对函数随自变量的变化而变化的规律进行了探究.下面是小东的探究过程:(1)通过取点、画图、测量,得到了与的几组值,如下表,请补充完整(说明:相关数值保留一位小数);01.02.03.04.05.06.07.08.06.35.43.72.52.42.73.3(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:①当取最小值时,的值约为.(结果保留一位小数)②当是等腰三角形时,的长度约为.(结果保留一位小数)-参考答案-一、单选题1、B【解析】【分析】过点C作CD⊥x轴于D,由“AAS”可证△AOB≌△BDC,可得AO=BD=2,BO=CD=n=a,即可求解.【详解】解:如图,过点C作CD⊥x轴于D,∵点A(0,2),∴AO=2,∵△ABC是等腰直角三角形,且AB=BC,∴∠ABC=90°=∠AOB=∠BDC,∴∠ABO+∠CBD=90°=∠ABO+∠BAO,∴∠BAO=∠CBD,在△AOB和△BDC中,,∴△AOB≌△BDC(AAS),∴AO=BD=2,BO=CD=n=a,∴0<a<1,∵OD=OB+BD=2+a=m,∴∴2<m<3,故选:B.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.2、A【解析】【分析】根据正方形的性质,全等三角形的性质和三角形的面积公式解答即可.【详解】∵正方形ABCD,∴AB=AD,∠BAC=DAC,∵AE=AE,∴△ABE≌△ADE,∴=5,同理△CBE≌△CDE,∴,∵,∴CDE的面积为:=3,故选A.【点睛】本题考查了正方形的性质,关键是根据全等三角形的性质和三角形的面积公式解答.3、D【解析】【分析】第四象限中横坐标为正,纵坐标为负,到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,进而可表示出点坐标.【详解】解:由题意知点的横坐标为2,纵坐标为∴点的坐标为故选D.【点睛】本题考查了直角坐标系中的点坐标.解题的关键在于确定横、纵坐标的值.4、B【解析】【分析】根据平行四边形及平行线的性质可得,再由角平分线及等量代换得出,利用等角对等边可得,结合图形即可得出线段长度.【详解】解:∵四边形ABCD为平行四边形,∴,∴,∵AE平分,∴,∴,∴,∵,∴,故选:B.【点睛】题目主要考查平行四边形及平行线的性质,利用角平分线计算,等角对等边等,理解题意,熟练运用平行四边形的性质是解题关键.5、A【解析】【分析】函数就是在一个变化过程中有两个变量x,y,当给定一个x的值时,y由唯一的值与之对应,则称y是x的函数,x是自变量,注意“y有唯一性”是判断函数的关键.【详解】解:根据函数的定义,每给定自变量x一个值都有唯一的函数值y与之相对应,故第2个图符合题意,其它均不符合,故选:A.【点睛】本题考查函数图象的识别,判断方法:做垂直x轴的直线在左右平移的过程中,与函数图象只会有一个交点.6、A【解析】【分析】根据分式值为零的条件可得:x2﹣1=0且x+1≠0,再求解即可.【详解】解:由题意得:x2﹣1=0且x+1≠0,解得:x=1.故选:A.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.7、D【解析】【分析】矩形的判定方法有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形;由矩形的判定方法即可求解.【详解】解:A、对角线是否互相平分,能判定是否是平行四边形,故不符合题意;B、测量一组对角是否都为直角,不能判定形状,故不符合题意;C、测量对角线长是否相等,不能判定形状,故不符合题意;D、测量3个角是否为直角,若四边形中三个角都为直角,能判定矩形,故符合题意;故选:D.【点睛】本题考查的是矩形的判定、平行四边形的判定等知识;熟练掌握矩形的判定和平行四边形的判定与性质是解题的关键.8、B【解析】【分析】解不等式组和分式方程得出关于y的范围及x的值,根据不等式组有解和分式方程的解为正整数解得出a的范围,继而可得整数a的个数.【详解】解:解不等式组由①得:y<11,由②得:y≥2a-5,∵不等式组至少有4个整数解,即y=10,9,8,7;∴2a-5≤7,解得:a≤6.解关于x的分式方程,得:x=,∵分式方程有正整数解,∴a-2是8的约数,且
≠4,≠0,a≠2,解得:a=3或6或10,所以所有满足条件的整数a的值为3,6.那么符合条件的所有整数a的和为9.故选:B.【点睛】本题主要考查了分式方程的解和一元一次不等式组的解,熟练掌握解分式方程和不等式组的能力,并根据题意得到关于a的范围是解题的关键.二、填空题1、【解析】【分析】直接利用一次函数平移规律“上加下减”进而得出即可.【详解】解:∵一次函数的图像向上平移5个单位,∴所得图像的函数表达式为:故答案为:【点睛】本题考查了一次函数平移,掌握平移规律是解题的关键.2、(0,0)(x,0)(0,y)【解析】略3、49【解析】【分析】延长FE交AB于点M,则,,由正方形的性质得,推出是等腰直角三角形,得出,由勾股定理求出CM,故得出BC,由正方形的面积公式即可得出答案.【详解】如图,延长FE交AB于点M,则,,∵四边形ABCD是正方形,∴,∴是等腰直角三角形,∴,在中,,∴,∴.故答案为:49.【点睛】本题考查正方形的性质以及勾股定理,掌握正方形的性质是解题的关键.4、平行或重合##重合或平行【解析】【分析】根据点的坐标规律解答,此题根据图形即可求得.【详解】解:点B与点C的横坐标相同,则直线BC//y轴,当点B与点C在y轴上时,则直线BC与y轴重合.故答案为:平行或重合.【点睛】本题考查了平行于坐标轴的直线上点的坐标特点:平行于x轴的直线上所有点的纵坐标相等,平行于y轴的直线上所有点的横坐标相等.5、28【解析】【分析】由全等三角形的性质可证△AOM≌△CON,可得AO=CO,由等腰三角形的性质可得BO⊥AC,即可求解.【详解】解:∵四边形ABCD是菱形,∴AB//CD,AB=BC,BC//AD,∴∠MAO=∠NCO,∠BCA=∠CAD.在△AOM和△CON中,,∴△AOM≌△CON(AAS),∴AO=CO,又∵AB=BC,∴BO⊥AC,∴∠BCO=90°﹣∠OBC=28°=∠DAC.故答案为:28.【点睛】本题考查了菱形的性质,等腰三角形的性质,全等三角形的判定和性质,掌握菱形的性质是本题的关键.6、4【解析】【分析】根据平行四边形的性质可得,由角平分线可得,所以,所以,同理可得,则根据即可求解.【详解】∵四边形是平行四边形,∴,,,∴,∴平分,∴,∴,∴,同理可得,∴.故答案为:4【点睛】本题主要考查了平行四边形的性质、角平分线的定义,转化线段是解题的关键.7、或且【解析】【分析】设BC与y轴交于点M,根据题意可得E点不在AD边上,即,分两种情况进行讨论:①如果,那么点E在AB边或线段BM上;②如果,那么点E在CD边或线段CM上;对两种情况的临界情况进行分析即可得出结果.【详解】解:如图,设BC与y轴交于点M,,,,∴E点不在AD边上,;①如果,那么点E在AB边或线段BM上,当点E在AB边且时,由勾股定理得,,,,,当直线经过点,时,.,,当点E在线段BM上时,,,符合题意;②如果,那么点E在CD边或线段CM上,当点E在CD边且时,E与D重合;当时,由勾股定理得,,,,此时E与C重合,当直线经过点时,.当点E在线段CM上时,,且,符合题意;综上,当时,的取值范围是或且,故答案为:或且.【点睛】题目主要考查正比例函数的综合问题,包括其性质及分类讨论思想,勾股定理解三角形等,理解题意,熟练掌握运用分类思想是解题关键.三、解答题1、见解析【解析】【分析】由平行四边形的性质得AD=BC,AD∥BC,再由中点的定义得DE=AD,BF=BC,则DE=BF,DE∥BF,即可得出结论.【详解】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵点E、F分别为平行四边形ABCD的边AD、BC的中点,∴DE=AD,BF=BC,∴DE=BF,DE∥BF,∴四边形EBFD为平行四边形.【点睛】本题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定与性质是解题的关键.2、(1)5(2)(3)①当E点坐标为(,15)或(4,-3)或(,-9)时,以P、E、A、B四点构成的四边形是平行四边形;②点Q的坐标为(5,)【解析】【分析】(1)如图所示,连接AC交y轴于J,根据菱形的性质可得AC⊥OB,AJ=JC,OJ=BJ,由点C的坐标为(4,3),得到AJ=JC=4,OJ=BJ=3,则;(2)先求出A点坐标,然后用待定系数法求出反比例函数解析式即可;(3)①分AB为以P、E、A、B四点构成平行四边形的边和对角线两种情况讨论求解即可;②过点A作AT⊥PD于T,过点Q作QR⊥AT于R,先求出AT=9,然后证明△APT≌△QRA得到AT=RQ=9,则Q点的横坐标为5,由此求解即可.(1)解:如图所示,连接AC交y轴于J,∵四边形OABC是菱形,∴AC⊥OB,AJ=JC,OJ=BJ,∵点C的坐标为(4,3),∴AJ=JC=4,OJ=BJ=3,∴,故答案为:5;(2)解:∵AJ=JC=4,OJ=BJ=3,∴点A的坐标为(-4,3),∵反比例函数经过点A(-4,3),∴,∴,∴反比例函数解析式为;(3)解:①设E点坐标为(m,),∵OJ=BJ=3,∴OB=6,∴B点坐标为(0,6),∴D点坐标为(0,-6),∴直线l为,设P点坐标为(a,-6)当AB是以P、E、A、B四点构成平行四边形的对角线时,∵线段AB与线段PE的中点坐标相同,∴,∴,∴点E的坐标为(,15);如图所示,当AB为平行四边形的边时,即以P、E、A、B四点构成平行四边形为时,∵与的中点坐标相同,∴,∴,∴的坐标为(4,-3);同理可以求出当AB为平行四边形的边时,即以P、E、A、B四点构成平行四边形为时,点的坐标为(,-9);综上所述,当E点坐标为(,15)或(4,-3)或(,-9)时,以P、E、A、B四点构成的四边形是平行四边形;②如图所示,过点A作AT⊥PD于T,过点Q作QR⊥AT于R,∵点A的坐标为(-4,3),直线l为,∴AT=9,∵∠ATP=∠QRA=∠PAQ=90°,∴∠PAT+∠APT=90°,∠PAT+∠QAR=90°,∴∠APT=∠QAR,又∵AP=QA,∴△APT≌△QRA(AAS),∴AT=RQ=9,∴Q点的横坐标为5,∵Q在反比例函数上,∴,∴点Q的坐标为(5,).【点睛】本题主要考查了反比例函数与几何综合,菱形的性质,勾股定理,全等三角形的性质与判定,平行四边形的性质,坐标与图形,熟知相关知识是解题的关键.3、(1)见解析(2)90(3),理由见解析【解析】【分析】(1)根据SAS证明,由全等的性质得,由即可得证;(2)由全等的性质得,由得,故,由对顶角相等得,故,即可得出答案;(3)根据SAS证明,由全等的性质得,,由得,故,由对顶角相等得,故,即可得出是等边三角形,进而得出.(1)∵四边形ABCD是正方形,∴,,∵,∴,∴,∵,∴;(2)∵,∴,∵,∴,∴,∵,∴,故答案为:90;(3)∵四边形ABCD是菱形,∴,,∵,∴,∴,,∵,∴,∴,,∵,∴,∴是等边三角形,∴,∵,∴.【点睛】本题考查正方形的性质、菱形的性质、全等三角形的判定与性质以及等边三角形的判定与性质,根据题意找出全等三角形得边角关系是解题的关键.4、(1)2;-x+2,x+2;(2)见解析;(3)函数图象关于y轴对称;当x=0时,y有最大值2;(4)①22;②1;③.【解析】【分析】(1)利用绝对值的意义,分别代入计算,即可得到答案;(2)结合(1)的结论,画出分段函数的图像即可;(3)结合函数图像,归纳出函数的性质即可;(4)结合函数图像,分别进行计算,即可得到答案;【详解】解:(1)①当x=0时,;②当x>0时,;③当x<0时,;故答案为:2;x+2;x+2;(2)函数y=|x|+2的图象,如图所示:(3)函数图象关于y轴对称;当x=0时,y有最大值2.(答案不唯一)(4)①函数图象与轴有2个交点,方程有2个解;②方程有1个解;③若关于的方程无解,则的取值范围是.故答案为:2;2;1;.【点睛】本题考查了一次函数的图像和性质,绝对值的意义,解题的关键是熟练掌握题意,正确的画出图像.5、(1)y=3x−1;(2)(0,5),(0,−1−),(0,−1),(0,).(3)y3=x+或y3=x.【解析】【分析】(1)把D坐标代入y=x+1求出n的值,确定出D坐标,把B与D坐标代入y=kx+b中求出k与b的值,确定出直线BD解析式;(2)如图所示,设P(0,p)分三种情况考虑:当BD=PD;当BD=BP时;当BP=DP时,分别求出p的值,确定出所求即可;(3)先求出四边形AOCD的面积,再分情况讨论即可求解.【详解】解:(1)把D坐标(1,n)代入y=x+1中得:n=2,即D(1,2),把B(0,−1)与D(1,2)代入y=kx+b中得:,解得:,∴直线BD解析式为y=3x−1,即y2函数表达式为y=3x−1;(2)如图所示,设P(0,p)分三种情况考虑:当BD=PD时,可得(0−1)2+(−1−2)2=(0−1)2+(p−2)2,解得:p=5或p=−1(舍去),此时P1(0,5);当BD=BP时,可得(0−1)2+(−1−2)2=(p+1)2,解得:p=−1±,此时P2(0,−1+),P3(0,−1−);当BP=DP时,可得(p+1)2=(0−1)2+(p−2)2,解得:p=,即P4(0,),综上,P的坐标为(0,5),(0,−1−),(0,−1),(0,).(3)对于直线y=x+1,令y=0,得到x=−1,即E(−1,0);令x=0,得到y=1,∴A(0,1)对于直线y=3x−1,令y=0,得到x=,即C(,0),则S四边形AOCD=S△DEC−S△AEO=××2−×1×1=∵一次函数y3=mx+n的图像经过点D,且将四边形AOCD的面积分成1:2.①设一次函数y3=mx+n的图像与y轴交于Q1点,∴S△ADQ1=S四边形AOCD=∴∴AQ1=∴Q1(0,)把D(1,2)、Q1(0,)代入y3=mx+n得解得∴y3=x+;②设一次函数y3=mx+n的图像与x轴交于Q2点,∴S△CDQ2=S四边形AOCD=∴∴CQ2=∴Q2(,0)把D(1,2)、Q2(,0)代入y3=mx+n得解得∴y3=x;综上函数y3=mx+n的表达式为y3=x+或y3=x.【点睛】此题属于一次函数综合题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026天津津南国有资本投资运营集团有限公司及实控子公司招聘工作人员招聘11人备考题库含答案详解(黄金题型)
- 2026山东省阿秒科学实验室(山东省国际顶尖科学家工作室)招聘备考题库附参考答案详解(b卷)
- 2026上半年贵州事业单位联考贵州省投资促进局营商环境服务中心招聘1人备考题库完整参考答案详解
- 2026广东佛山市季华实验室X研究部博士后招聘1人备考题库附答案详解(b卷)
- 2026中煤财务有限责任公司招聘2人备考题库带答案详解(b卷)
- 2026年马鞍山师范高等专科学校面向全省公开选调事业单位工作人员1名备考题库附答案详解(培优a卷)
- 2026上半年贵州事业单位联考贵州医科大学第二附属医院招聘22人备考题库附参考答案详解(研优卷)
- 2026云南临沧沧源佤族自治县勐省中心卫生院招聘村卫生室工作人员5人备考题库附答案详解(培优)
- 2026四川绵阳师范学院招聘博士研究生50人备考题库带答案详解(考试直接用)
- 2026广东佛山顺德区陈村镇民族路幼儿园临聘保育员招聘1人备考题库带答案详解(黄金题型)
- 四位数乘四位数乘法题500道
- 工人退场工资结算单
- 二次根式的化简与最简二次根式
- 深圳事业单位绩效工资制度实施方案
- YS/T 377-2010标准热电偶用铂铑10-铂偶丝
- 医院消毒灭菌效果环境卫生学监测报告单(检验)
- 从事拍卖业务许可(变更审批)告知承诺书
- xxx项目勘察设计任务书
- 中国矿业权评估准则
- 防盗门购销合同通用版
- 【精品文档】馆藏文物信息管理系统用户手册电子版 - 馆藏文物信息管理系统用户手册
评论
0/150
提交评论