




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学上册《全等三角形》专项练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,已知是的角平分线,是的垂直平分线,,,则的长为(
)A.6 B.5 C.4 D.2、如图①,已知,用尺规作它的角平分线.如图②,步骤如下:第一步:以B为圆心,以a为半径画弧,分别交射线,于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在内部交于点P;第三步;画射线,射线即为所求.下列叙述不正确的是(
)A. B.作图的原理是构造三角形全等C.由第二步可知, D.的长3、小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带(
)A.第1块 B.第2块 C.第3块 D.第4块4、如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF若添加下列条件中的某一个.就能使DOE△FOE,你认为要添加的那个条件是(
)A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE5、有一个小口瓶(如图所示),想知道它的内径是多少,但是尺子不能伸到里边直接测,于是拿两根长度相同的细木条,把两根细木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,那么△OAB≌△OCD理由是(
)A.边角边 B.角边角 C.边边边 D.角角边第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,若△ABC≌△A1B1C1,且∠A=110°,∠B=40°,则∠C1=______°.2、如图,两根旗杆间相距20米,某人从点B沿BA走向点A,一段时间后他到达点M,此时他分别仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆BD的高为12米,该人的运动速度为2米/秒,则这个人运动到点M所用时间是__________秒.3、如图,的三边的长分别为,其三条角平分线交于点,则=______.4、如图,若△ABC≌△ADE,且∠1=35°,则∠2=_____.5、如图,在中,,AD是的角平分线,过点D作,若,则______.三、解答题(5小题,每小题10分,共计50分)1、如图所示,在三角形ABC中,,,作的平分线与AC交于点E,求证:.2、在中,,直线经过点C,且于D,于E,(1)当直线绕点C旋转到图1的位置时,显然有:(不必证明);(2)当直线绕点C旋转到图2的位置时,求证:;(3)当直线MN绕点C旋转到图3的位置时,试问、、具有怎样的等量关系?请直接写出这个等量关系.3、如图,和都是等边三角形,连接与,延长交于点H.(1)证明:;(2)求的度数;(3)连接,求证:平分.4、如图,在中,D是边上的点,,垂足分别为E,F,且.求证:.5、已知:如图,在△ABC中,AB=AC,在△ADE中,AD=AE,且∠BAC=∠DAE,连接BD,CE交于点F,连接AF.(1)求证:△ABD≌△ACE;(2)求证:FA平分∠BFE.-参考答案-一、单选题1、D【解析】【分析】根据ED是BC的垂直平分线、BD是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE=3,故选D.【考点】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.2、D【解析】【分析】根据用尺规作图法画已知角的角平分线的基本步骤判断即可【详解】解:A、∵以a为半径画弧,∴,故正确B、根据作图步骤可知BD=BE,PD=PE,BP=BP,∴△BDP≌△BEP(SSS),故正确C、∵分别以D,E为圆心,以b为半径画弧,两弧在内部交于点P,∴,故正确D、分别以D,E为圆心,以b为半径画弧,其中,否则两个圆弧没有交点,故错误故选:D【考点】本题考查用尺规作图法画已知角的角平分线及理论依据,熟练尺规作图的基本步骤是关键3、B【解析】【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【详解】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.【考点】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4、D【解析】【分析】根据OB平分∠AOC得∠AOB=∠BOC,又因为OE是公共边,根据全等三角形的判断即可得出结果.【详解】解:∵OB平分∠AOC∴∠AOB=∠BOC当△DOE≌△FOE时,可得以下结论:OD=OF,DE=EF,∠ODE=∠OFE,∠OED=∠OEF.A答案中OD与OE不是△DOE≌△FOE的对应边,A不正确;B答案中OE与OF不是△DOE≌△FOE的对应边,B不正确;C答案中,∠ODE与∠OED不是△DOE≌△FOE的对应角,C不正确;D答案中,若∠ODE=∠OFE,在△DOE和△FOE中,∴△DOE≌△FOE(AAS)∴D答案正确.故选:D.【考点】本题考查三角形全等的判断,理解全等图形中边和角的对应关系是解题的关键.5、A【解析】【详解】解:∵根据SAS得:△OAB≌△ODC.故选A.二、填空题1、30【解析】【分析】本题实际上是全等三角形的性质以及根据三角形内角和等于180°来求角的度数.【详解】∵△ABC≌△A1B1C1,∴∠C1=∠C,又∵∠C=180°-∠A-∠B=180°-110°-40°=30°,∴∠C1=∠C=30°.故答案为30.【考点】本题考查了全等三角形的性质;解答时,除必备的知识外,还应将条件和所求联系起来,即将所求的角与已知角通过全等及三角形内角之间的关系联系起来.2、4【解析】【分析】根据角的等量代换求出,便可证出,利用全等的性质得到,从而求出的长,再通过时间=路程÷速度列式计算即可.【详解】解:根据题意可得:,,,∵∴又∵∴∴在和中∴∴∴∴时间=故答案为4【考点】本题主要考查了全等三角形的判定与性质,利用角的等量代换找出三角形全等的条件是解题的关键.3、【解析】【分析】首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.【详解】解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO:S△BCO:S△CAO=(AB•OD):(BC•OF):(AC•OE)=AB:BC:AC=40:50:60=.故答案为:.【考点】此题考查了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.4、35°.【解析】【分析】根据全等的性质可得:∠EAD=∠CAB,再根据等式的基本性质可得∠1=∠2=35°.【详解】解:∵△ABC≌△ADE,∴∠EAD=∠CAB,∴∠EAD-∠CAD=∠CAB-∠CAD,∴∠2=∠1=35°.故答案为35°.【考点】此题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解决此题的关键.5、7【解析】【分析】先利用角平分线性质证明CD=DE,再求出的值即可.【详解】解:∵AD平分∠BAC交BC于点D,,DE⊥AB,∴CD=ED.∵,∴BD+CD=7,∴,故答案为:7.【考点】本题主要考查了角平分线的性质,解题的关键是熟练掌握角平分线的性质.三、解答题1、见解析【解析】【分析】由于BC,AE和BE没在一条线上,不能进行比较;故在BC上截取AE和BE,然后根据等腰三角形、角平分线的知识即可发现全等三角形,证明边的相等关系,最后运用线段的和差关系,即可完成证明.【详解】证明:如图在上截取,连结.在上截取,连结.,,平分,,,,,,,,,,,又,,,,,,【考点】本题考查了等腰三角形的性质,在进行线段比较的题目中,可以采用截取法,让它们位于一条直线上,以方便比较.2、(1)见解析;(2)见解析;(3)DE=BE-AD【解析】【分析】(1)由于△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,由此即可证明△ADC≌△CEB,然后利用全等三角形的性质即可解决问题;(2)由于△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,由此仍然可以证明△ADC≌△CEB,然后利用全等三角形的性质也可以解决问题;(3)当直线MN绕点C旋转到图(3)的位置时,仍然△ADC≌△CEB,然后利用全等三角形的性质可以得到DE=BE-AD.【详解】解:(1)∵△ABC中,∠ACB=90°,∴∠ACD+∠BCE=90°,又直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°∴∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴CD=BE,CE=AD,∴DE=CD+CE=AD+BE;(2)∵△ABC中,∠ACB=90°,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,而AC=BC,∴△ADC≌△CEB,∴CD=BE,CE=AD,∴DE=CE-CD=AD-BE;(3)如图3,∵△ABC中,∠ACB=90°,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,∴∠ACD=∠CBE,∵AC=BC,∴△ADC≌△CEB,∴CD=BE,CE=AD,∴DE=CD-CE=BE-AD;DE、AD、BE之间的关系为DE=BE-AD.【考点】此题需要考查了全等三角形的判定与性质,也利用了直角三角形的性质,是一个探究性题目,对于学生的能力要求比较高.3、(1)见解析(2)60°(3)见解析【解析】【分析】(1)由△ABD和△BCE都是等边三角形得BA=BD,BE=BC,∠ABD=∠EBC=60°,所以∠ABE=∠DBC=60°−∠DBE,即可根据全等三角形的判定定理“SAS”证明△ABE≌△DBC,得AE=DC;(2)由△ABE≌△DBC得∠BAE=∠BDC,因为∠BAD=∠BDA=60°,所以∠HAD+∠HDA==120°,所以∠AHD=60°;(3)作BF⊥HA于点F,BG⊥HC交HC的延长线于点G,则∠AFB=∠BFH=∠G=90°,即可证明△BAF≌△BDG,则BF=BG,根据“到角的两边距离相等的点在角的平分线上”即可证明HB平分∠AHC.(1)证明:如图1,∵△ABD和△BCE都是等边三角形,∴BA=BD,BE=BC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC=60°−∠DBE,在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴AE=DC.(2)解:如图1,由(1)得△ABE≌△DBC,∴∠BAE=∠BDC,∵∠BAD=∠BDA=60°,∴∠HAD+∠HAD=∠HAD+∠BDC+∠BDA=∠HAD+∠BAE+∠BDA=∠BAD+∠BDA=120°,∴∠AHD=180°−(∠HAD+∠HDA)=60°.(3)证明:如图2,作BF⊥HA于点F,BG⊥HC交HC的延长线于点G,则∠AFB=∠BFH=∠G=90°,由△ABE≌△DBC得∠BAF=∠BDG,在△BAF和△BDG中,,∴△BAF≌△BDG(AAS),∴BF=BG,∴点B在∠AHC的平分线上,∴HB平分∠AHC.【考点】此题考查等边三角形的性质、全等三角形的判定与性质、到角的两边距离相等的点在角的平分线上等知识,证明三角形全等是解题的关键.4、见解析【解析】【分析】由得出,由SAS证明,得出对应角相等即可.【详解】证明:∵,∴.在和中,∴,∴.【考点】本小题考查垂线的性质、全等三角形的判定与性质、等基础知识,考查推理能力、空间观念与几何直观.5、(1)见解析(2)见解析【解析】【分析】(1)根据SAS证明结论即可;(2)作A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- plc基础及应用考试试题及答案
- 电缆车间安全小知识培训课件
- 电线电缆绞丝工艺知识培训课件
- 电站操作规程培训课件
- 2.2做更好的自己 教案(表格式) 统编版道德与法治八年级上册
- 高电位活化细胞课件
- 高炉煤气安全知识培训课件
- LC-SF-14-生命科学试剂-MCE
- 2-Hydroxydihydrodaidzein-生命科学试剂-MCE
- Calindol-hydrochloride-13C-D2-生命科学试剂-MCE
- 药事管理学全套课件
- 社区心理学课件
- 《中式面点制作第二版》教案高教版
- 看门狗定时器
- 质量整改通知单(样板)
- 进展性脑卒中的诊疗策略课件
- 2020届高三北京高考“多文本阅读”总攻略
- (高职)中外民俗电子课件(全套)
- 《管理学基础》完整版课件全套ppt教程(最新)
- 新版《医疗器械监督管理条例》试题题库含答案
- 遵义县偏岩河工程设计说明书(鸭溪镇)
评论
0/150
提交评论