解析卷-人教版8年级数学上册《轴对称》专题测试试题(解析版)_第1页
解析卷-人教版8年级数学上册《轴对称》专题测试试题(解析版)_第2页
解析卷-人教版8年级数学上册《轴对称》专题测试试题(解析版)_第3页
解析卷-人教版8年级数学上册《轴对称》专题测试试题(解析版)_第4页
解析卷-人教版8年级数学上册《轴对称》专题测试试题(解析版)_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学上册《轴对称》专题测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、北京2022年冬奥会会徽如图所示,组成会徽的四个图案中是轴对称图形的是(

)A. B. C. D.2、下列三角形中,等腰三角形的个数是(

A.4个 B.3个 C.2个 D.1个3、2020年初,新冠状病毒引发肺炎疫情,全国多家医院纷纷派医护人员驰援武汉.下面是四家医院标志得图案,其中是轴对称图形得是(

)A. B.C. D.4、小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有(

)A.3个 B.4个 C.5个 D.无数个5、如图,是由大小一样的小正方形组成的网格,△ABC的三个顶点均落在小正方形的顶点上.在网格上能画出的三个顶点都落在小正方形的顶点上,且与△ABC成轴对称的三角形共有(

)A.5个 B.4个 C.3个 D.2个第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、正五边形ABCDE中,对角线AC、BD相较于点P,则∠APB的度数为_______.2、如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点处.若,则为_________.3、如图,在△ABC中,∠ACB的平分线交AB于点D,

DE⊥AC于点E,F为BC上一点,若DF=AD,△ACD与△CDF的面积分别为10和4,则△AED的面积为______4、在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有__种.5、若点与点关于轴对称,则值是________.三、解答题(5小题,每小题10分,共计50分)1、如图,在中,,过的中点作,,垂足分别为点、.(1)求证:;(2)若,求的度数.2、如图,在中,,.(1)在线段上找到一个点,使得.(尺规作图,不写作法,保留作图痕迹).(2)在(1)的条件下,连接,求证:是等边三角形.3、如图,在中,,;点在上,.连接并延长交于.(1)求证:;(2)求证:;(3)若,与有什么数量关系?请说明理由.4、如图,AD是△ABC的中线,点E在AD上,且BE=AC,求证:∠BED=∠CAD.5、如图,一张纸上有线段AB;(1)请用尺规作图,作出线段AB的垂直平分线(保留作图痕迹,不写作法和证明);(2)若不用尺规作图,你还有其它作法吗?请说明作法(不作图);-参考答案-一、单选题1、D【解析】【分析】根据轴对称图形的定义判断即可【详解】A,B,C都不是轴对称图形,故不符合题意;D是轴对称图形,故选D.【考点】本题考查了轴对称图形的定义,准确理解定义是解题的关键.2、B【解析】【分析】根据题图所给信息,根据边或角分析即可【详解】解:第一个图形中有两边相等,故第一个三角形是等腰三角形,第二个图形中的三个角分别为50°,35°,95°,故第二个三角形不是等腰三角形;第三个图形中的三个角分别为100°,40°,40°,故第三个三角形是等腰三角形;第四个图形中的三个角分别为90°,45°,45°,故第四个三角形是等腰三角形;故答案为:B.【考点】本题考查了等腰三角形的判定,掌握等腰三角形的判定是解题的关键.3、B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:选项B能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是做轴对称图形;选项A、C、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是做轴对称图形;故选:B.【考点】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4、C【解析】【分析】结合正方形的特征,可知平移的方向只有5个,向上,下,右,右上45°,右下45°方向,否则两个图形不轴对称.【详解】因为正方形是轴对称图形,有四条对称轴,因此只要沿着正方形的对称轴进行平移,平移前后的两个图形组成的图形一定是轴对称图形,观察图形可知,向上平移,向上平移、向右平移、向右上45°、向右下45°平移时,平移前后的两个图形组成的图形都是轴对称图形,故选C.【考点】本题考查了图形的平移、轴对称图形等知识,熟练掌握正方形的结构特征是解本题的关键.5、A【解析】【分析】认真读题,观察图形,根据图形特点先确定对称轴,再根据对称轴找出相应的三角形.【详解】解:如图:与△ABC成轴对称的三角形有:①△FCD关于CG对称;②△GAB关于EH对称;③△AHF关于AD对称;④△EBD关于BF对称;⑤△BCG关于AG的垂直平分线对称.共5个.故选A.【考点】本题考查轴对称的基本性质,结合了图形的常见的变化,要根据直角三角形的特点从图中找到有关的直角三角形再判断是否为对称图形.二、填空题1、72°##72度【解析】【分析】根据正五边形的性质,可得,AB=BC=CD,从而得到∠ACB=∠CBD=36°,再由三角形外角的性质,即可求解.【详解】解:∵多边形ABCDE是正五边形,∴,AB=BC=CD,∴∠ACB=∠CBD=36°,∴∠APB=∠ACB+∠CBD=72°.故答案为:72°【考点】本题主要考查了正多边形的性质,等腰三角形的性质,三角形外角的性质,熟练掌握正多边形的性质,等腰三角形的性质,三角形外角的性质是解题的关键.2、105°.【解析】【分析】由平行四边形的性质和折叠的性质,得出∠ADB=∠BDG=∠DBG,由三角形的外角性质求出∠BDG=∠DBG=∠1=25°,再由三角形内角和定理求出∠A,即可得到结果.【详解】∵AD∥BC,∴∠ADB=∠DBG,由折叠可得∠ADB=∠BDG,∴∠DBG=∠BDG,又∵∠1=∠BDG+∠DBG=50°,∴∠ADB=∠BDG=25°,又∵∠2=50°,∴△ABD中,∠A=105°,∴∠A'=∠A=105°,故答案为105°.【考点】本题考查了平行四边形的性质,折叠的性质,三角形的外角性质,三角形内角和定理.3、3【解析】【分析】如图(见解析),过点D作,根据角平分线的性质可得,再利用三角形全等的判定定理得出,从而有,最后根据三角形面积的和差即可得出答案.【详解】如图,过点D作平分,又则解得故答案为:3.【考点】本题考查了角平分线的性质、直角三角形全等的判定定理等知识点,通过作辅助线,构造两个全等的三角形是解题关键.4、13【解析】【分析】根据轴对称图形的性质,分别移动一个正方形,即可得出符合要求的答案.【详解】如图所示:故一共有13画法.5、1【解析】【分析】直接利用关于y轴对称点的性质得出m,n的值,进而得出答案.【详解】解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,∴1+m=3,1-n=2,解得:m=2,n=-1则(m+n)2021=(2-1)2021=1.故答案为:1.【考点】此题主要考查了关于y轴对称点的性质,解题的关键是掌握两点关于y轴对称,纵坐标不变,横坐标互为相反数.三、解答题1、(1)证明见解析;(2)=80°【解析】【分析】(1)利用已知条件和等腰三角形的性质证明,根据全等三角形的性质即可证明;(2)根据三角形内角和定理得∠B=50°,所以∠C=50°,在△ABC中利用三角形内角和定理即可求解.【详解】解:(1)证明:∵点D为BC的中点,∴BD=CD,∵,,∴∠DEB=∠DFC=90°在△BDE和△CDF中,∴,∴.(2)∵∴∠B=180°-(∠BDE+∠BED)=50°,∴∠C=50°,在△ABC中,=180°-(∠B+∠C)=80°,故=80°.【考点】本题考查等腰三角形的性质、全等三角形的判定与性质和三角形内角和定理,熟练掌握等腰三角形的性质并灵活应用是解题的关键.2、(1)见解析;(2)见解析【解析】【分析】(1)作线段AC的垂直平分线即可;(2)根据线段垂直平分线的性质可得DA=DC,根据等边对等角可得∠CAD=∠C,进而可得∠ADB=∠B=∠DAB=60°,然后可得答案.(1)解:如图所示:(2)∵∠BAC=90°,∠C=30°∴∠B=60°,又∵点D在AC的垂直平分线上,∴DA=DC,∴∠CAD=∠C=30°,∴∠DAB=60°,∴∠ADB=∠B=∠DAB=60°,即△ABD是等边三角形.【考点】此题主要考查了基本作图,以及线段垂直平分线的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.3、(1)见解析;(2)见解析;(3)若,则,理由见解析【解析】【分析】(1)首先利用SAS证明,即可得出结论;(2)利用全等三角形的性质和等量代换即可得出,从而有,则结论可证;(3)直接根据等腰三角形三线合一得出,又因为,则结论可证.【详解】解答:(1)证明:,.在和中,,,;(2)证明:∵,.,,即,,;

(3)若,则.理由如下:,∴BE是中线,

.,.【考点】本题主要考查全等三角形的判定及性质,等腰三角形的性质,掌握全等三角形的判定及性质和等腰三角形的性质是解题的关键.4、见解析【解析】【分析】延长AD到E,使FD=AD,连接BF,易证△ADC≌△FDB,得到BF=AC,∠F=∠CAD,而BE=AC,所以BF=BE,得∠BED=∠F,等量代换即可.【详解】证明:延长AD到E,使FD=AD,连接BF在△ADC和△FDB中,∴(SAS)∴BF=AC,∠F=∠CAD.∵BE=AC,∴BF=BE∴∠BED=∠F,∴∠BED=∠CAD.【考点】本题考查了全等三角形的判定与性质,等腰三角形的性质,倍长中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论