考点解析-冀教版8年级下册期末试题及参考答案详解【培优A卷】_第1页
考点解析-冀教版8年级下册期末试题及参考答案详解【培优A卷】_第2页
考点解析-冀教版8年级下册期末试题及参考答案详解【培优A卷】_第3页
考点解析-冀教版8年级下册期末试题及参考答案详解【培优A卷】_第4页
考点解析-冀教版8年级下册期末试题及参考答案详解【培优A卷】_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

冀教版8年级下册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、在平面直角坐标系中,点P(-3,-3)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2、已知点和点在一次函数的图象上,且,下列四个选项中k的值可能是()A.-3 B.-1 C.1 D.33、已知点P(a,3),Q(−2,b)关于y轴对称,则()A. B. C. D.4、如图,在矩形ABCD中,动点P从点A出发,沿A→B→C运动,设,点D到直线PA的距离为y,且y关于x的函数图象如图所示,则当和的面积相等时,y的值为()A. B. C. D.5、2021年我市有52000名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.52000名考生是总体 B.1000名考生是总体的一个样本C.1000名考生是样本容量 D.每位考生的数学成绩是个体6、在平面直角坐标系中,点A(3,-4)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7、如图①,在▱ABCD中,动点P从点B出发,沿折线B→C→D→B运动,设点P经过的路程为x,△ABP的面积为y,y是x的函数,函数的图象如图②所示,则图②中的a值为()A.3 B.4 C.14 D.18第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、已知直角坐标平面内的两点分别为A(2,﹣3)、B(5,6),那么A、B两点的距离等于______.2、如图,在平面直角坐标系xOy中,菱形ABCD的顶点A,D分别在y轴的正半轴和负半轴上,顶点B在x轴的负半轴上,若OA=3OD,S菱形ABCD=16,则点C的坐标为______.3、如图,在长方形中,,,、分别在边、上,且.现将四边形沿折叠,点,的对应点分别为点,,当点恰好落在边上时,则的长为______.4、过某个多边形的一个顶点的所有对角线,将这个多边形分成6个三角形,这个多边形是___边形.5、根据如图所示的程序计算函数值,若输入x的值为,则输出的y值为_.6、在四边形ABCD中,AD∥BC,BC⊥CD,BC=10cm,M是BC上一点,且BM=4cm,点E从A出发以1cm/s的速度向D运动,点F从点B出发以2cm/s的速度向点C运动,当其中一点到达终点,而另一点也随之停止,设运动时间为t,当t的值为_____时,以A、M、E、F为顶点的四边形是平行四边形.7、已知点A关于x轴的对称点B的坐标为(1,﹣2),则点A的坐标为_____.8、正比例函数图像经过点(1,-1),那么k=__________.三、解答题(7小题,每小题10分,共计70分)1、已知:在平行四边形ABCD中,分别延长BA,DC到点E,H,使得BE=2AB,DH=2CD.连接EH,分别交AD,BC于点F,G.(1)求证:AF=CG;(2)连接BD交EH于点O,若EH⊥BD,则当线段AB与线段AD满足什么数量关系时,四边形BEDH是正方形?2、如图,在△ABC中,AC=2,AB=4,BC=6,点P为边BC上的一个动点(不与点B、C重合),点P关于直线AB的对称点为点Q,联结PQ、CQ,PQ与边AB交于点D.(1)求∠B的度数;(2)联结BQ,当∠BQC=90°时,求CQ的长;(3)设BP=x,CQ=y,求y关于x的函数解析式,并写出函数的定义域.3、在平面直角坐标系中,已知点A(4,0),点B(0,3).点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q两点同时出发.(1)连接AQ,当△ABQ是直角三角形时,则点Q的坐标为;(2)当P、Q运动到某个位置时,如果沿着直线AQ翻折,点P恰好落在线段AB上,求这时∠AQP的度数;(3)若将AP绕点A逆时针旋转,使得P落在线段BQ上,记作P',且AP'∥PQ,求此时直线PQ的解析式.4、已知:△ABC,AD为BC边上的中线,点M为AD上一动点(不与点A重合),过点M作ME∥AB,过点C作CE∥AD,连接AE.(1)如图1,当点M与点D重合时,求证:①△ABM≌△EMC;②四边形ABME是平行四边形(2)如图2,当点M不与点D重合时,试判断四边形ABME还是平行四边形吗?如果是,请给出证明;如果不是,请说明理由;(3)如图3,延长BM交AC于点N,若点M为AD的中点,求的值.5、如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABO的三个顶点坐标分别为A(-1,3),B(-4,3),O(0,0).(1)△ABO向右平移5个单位,向上平移1个单位,得到△A1B1C1,画出△A1B1C1并写出点B1的坐标;(2)画出△A1B1C1沿着x轴翻折后得到的△A2B2C2,并写出点A2的坐标.6、(1)【发现证明】如图1,在正方形中,点,分别是,边上的动点,且,求证:.小明发现,当把绕点顺时针旋转90°至,使与重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形中,如果点,分别是,延长线上的动点,且,则(1)中的结论还成立吗?若不成立,请写出,,之间的数量关系______(不要求证明)②如图3,如果点,分别是,延长线上的动点,且,则,,之间的数量关系是______(不要求证明)(3)【联想拓展】如图1,若正方形的边长为6,,求的长.7、如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.(1)试用含t的式子表示AE、AD、DF的长;(2)如图①,连接EF,求证四边形AEFD是平行四边形;(3)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.-参考答案-一、单选题1、C【解析】【分析】根据平面直角坐标系中各象限内点的坐标特征解答即可.【详解】解:因为A(−3,-3)中的横坐标为负,纵坐标为负,故点P在第三象限.故选C.【点睛】本题主要考查点所在的象限问题,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).2、A【解析】【分析】由m-1<m+1时,y1>y2,可知y随x增大而减小,则比例系数k+2<0,从而求出k的取值范围.【详解】解:当m-1<m+1时,y1>y2,y随x的增大而减小,∴k+2<0,得k<﹣2.故选:A.【点睛】本题考查一次函数的图象性质:当k<0,y随x增大而减小,难度不大.3、C【解析】【分析】根据关于y轴对称的点的坐标特点可得a、b的值,然后可得答案.【详解】解:∵点P(a,3)、Q(-2,b)关于y轴对称,∴a=2,b=3,∴,故选:C.【点睛】本题主要考查了关于y轴对称的点的坐标,关键是掌握关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变.4、D【解析】【分析】先结合图象分析出矩形AD和AB边长分别为4和3,当△PCD和△PAB的面积相等时可知P点为BC中点,利用面积相等求解y值.【详解】解:当P点在AB上运动时,D点到AP的距离不变始终是AD长,从图象可以看出AD=4,当P点到达B点时,从图象看出x=3,即AB=3.当△PCD和△PAB的面积相等时,P点在BC中点处,此时△ADP面积为,在Rt△ABP中,,由面积相等可知:,解得,故选:D.【点睛】本题主要考查了函数图形的认识,分析图象找到对应的矩形的边长,解决动点问题就是“动中找静”,结合图象找到“折点处的数据真正含义”便可解决问题.5、D【解析】【分析】根据总体、样本、样本容量、样本个体的定义,对各个选项进行判断即可.【详解】解:由题意知:52000名考生的数学成绩是总体,A说法错误,故不符合要求;1000名考生的数学成绩是总体的一个样本,B说法错误,故不符合要求;1000是样本容量,C说法错误,故不符合要求;每位考生的数学成绩是个体,D说法正确,故符合要求;故选D.【点睛】本题考查了总体、样本、样本容量、样本个体的定义.解题的关键在于把握各名词的区别.6、D【解析】【分析】根据直角坐标系中点的坐标的特点解答即可.【详解】∵3>0,-4<0,∴点(3,-4)在第四象限,故选:D.【点睛】本题考查直角坐标系中点的坐标的符号特点,第一象限为(+,+),第二象限为(-,+),第三象限为(-,-),第四象限为(+,-).7、A【解析】【分析】由图②知,BC=6,CD=14-6=8,BD=18-14=4,再通过解直角三角形,求出△CBD高,进而求解.【详解】解:由图②知,BC=6,CD=14-6=8,BD=18-14=4,过点B作BH⊥DC于点H,设CH=x,则DH=8-x,则BH2=BC2-CH2=BD2-DH2,即:BH2=42-(8-x)2=62-x2,解得:则:,则,故选:A.【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.二、填空题1、【解析】【分析】根据两点,利用勾股定理进行求解.【详解】解:在平面直角坐标系中描出、,分别过作平行于的线交于点,如图:的横坐标与的横坐标相同,的纵坐标与的纵坐标相同,,,,,故答案为:.【点睛】本题考查的是勾股定理,坐标与图形性质,解题的关键是掌握如果直角三角形的两条直角边长分别是,,斜边长为,那么.2、(-2,-8)【解析】【分析】由菱形的性质可得出,即,,再根据勾股定理可求出OB的长度.设,则,列等式,求出,则答案可解.【详解】,四边形ABCD为菱形,,,即,,,.设则,,即,,解得(舍去).在轴上,,即轴,则轴,.【点睛】本题考查了菱形的性质及勾股定理,根据菱形的性质结合勾股定理求出、、的长是解题的关键.3、4【解析】【分析】由勾股定理求出F,得到D,过点作H⊥AB于H,连接BF,则四边形是矩形,求出HE,过点F作FG⊥AB于G,则四边形BCFG是矩形,利用勾股定理求出的长.【详解】解:在长方形中,,,由折叠得5,∴,∴13=2,过点作H⊥AB于H,连接BF,则四边形是矩形,∴AH=D=2,∵∠EF=∠BEF,∠FE=∠BEF,∴∠EF=∠FE,∴E=F=13,∴=5,过点F作FG⊥AB于G,则四边形BCFG是矩形,∴BG=FC=5,∴EG=13-5=8,∴=4故答案为4.【点睛】此题考查了矩形的性质,折叠的性质,勾股定理,正确引出辅助线利用推理论证进行求解是解题的关键.4、八【解析】【分析】根据n边形从一个顶点出发可引出(n-3)条对角线,可组成(n-2)个三角形,依此可得n的值,即得出答案.【详解】解:由题意得,n-2=6,解得:n=8,故答案为:八.【点睛】本题考查了多边形的对角线,解题的关键是熟知一个n边形从一个顶点出发,可将n边形分割成(n-2)个三角形.5、##【解析】【分析】根据x的值选择相应的函数关系式求解函数值即可解答.【详解】解:∵x=,∴1<x<2,∴y=-x+2=-+2=,即输出的y值为,故答案为:.【点睛】本题考查求一次函数的函数值,明确每段函数的自变量取值范围是解答的关键.6、4s或s【解析】【分析】分两种情况:①当点F在线段BM上,即0≤t<2,②当F在线段CM上,即2≤t≤5,列方程求解.【详解】解:①当点F在线段BM上,即0≤t<2,以A、M、E、F为顶点的四边形是平行四边形,则有t=4﹣2t,解得t=,②当F在线段CM上,即2≤t≤5,以A、M、E、F为顶点的四边形是平行四边形,则有t=2t﹣4,解得t=4,综上所述,t=4或,以A、M、E、F为顶点的四边形是平行四边形,故答案为:4s或s.【点睛】此题考查了动点问题,一元一次方程与动点问题,平行四边形的定义,熟记平行四边形的定义是解题的关键.7、【解析】【分析】根据“关于x轴对称的两个点,横坐标相等,纵坐标互为相反数”,求解即可【详解】解:∵点A关于x轴的对称点B的坐标为(1,﹣2),∴点A的坐标为故答案为:【点睛】本题考查了关于x轴对称的点的坐标特征,掌握“关于x轴对称的两个点,横坐标相等,纵坐标互为相反数”是解题的关键.8、-2【解析】【分析】由正比例函数的图象经过点的坐标,利用一次函数图象上点的坐标特征可得出-1=k+1,即可得出k值.【详解】解:∵正比例函数的图象经过点(1,-1),∴-1=k+1,∴k=-2.故答案为:-2.【点睛】本题考查了正比例函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx是解题的关键.三、解答题1、(1)见解析(2)当AD=AB时,四边形BEDH是正方形【解析】【分析】(1)要证明AF=CG,只要证明△EAF≌△HCG即可;(2)利用已知可得四边形BEDH是菱形,所以当AE2+DE2=AD2时,∠BED=90°,四边形BEDH是正方形.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠BAD=∠BCD,∴∠AEF=∠CHG,∵BE=2AB,DH=2CD,∴BE=DH,∴BE-AB=DH-DC,∴AE=CH,∴∠BAD+∠EAF=180°,∠BCD+∠GCH=180°,∴∠EAF=∠GCH,∴△EAF≌△HCG(ASA),∴AF=CG;(2)解:当AD=AB时,四边形BEDH是正方形;理由:∵BE∥DH,BE=DH,∴四边形EBHD是平行四边形,∵EH⊥BD,∴四边形EBHD是菱形,∴ED=EB=2AB,当AE2+DE2=AD2时,则∠BED=90°,∴四边形BEDH是正方形,即AB2+(2AB)2=AD2,∴AD=AB,∴当AD=AB时,四边形BEDH是正方形..【点睛】本题考查了正方形的判定,菱形的判定,平行四边形的性质,全等三角形的判定与性质,结合图形分析并熟练掌握正方形的判定,平行四边形的性质,是解题的关键.2、(1)30°(2)(3)y=(0<x<6)【解析】【分析】(1)由勾股定理的逆定理可得出,由直角三角形的性质可得出答案;(2)求出,由直角三角形的性质得出.由勾股定理可得出答案;(3)过点作于点,证明为等边三角形,由勾定理得出,则可得出答案.(1)解:,,,,,,,,;(2)解:点关于直线的对称点为点,垂直平分,,,,,,,.;(3)解:过点作于点,,,为等边三角形,,,,,,,,,关于的函数解析式为.【点睛】本题是三角形综合题,考查了直角三角形的性质,等边三角形的判定与性质,勾股定理,轴对称的性质,解题的关键是熟练掌握勾股定理.3、(1)(,3)或(4,3)(2)45°(3)y=-247x+【解析】【分析】(1)△ABQ是直角三角形,分两种情况:①∠BQA=90°,AQ⊥BQ,BQ∥x轴,进而得出点坐标;②∠BAQ=90°,BA⊥AQ,如图过点Q作QC⊥OA,垂足为C,在Rt△AOB中,由勾股定理知AB=OA2+OB2,设AC=x,在Rt△ACQ中,由勾股定理知AQ2=AC2+CQ2(2)如图,点P翻折后落在线段AB上的点E处,由翻折性质和BQ∥OP可得,∠PAQ=∠BQA=∠EAQ,AB=QB,AP=12BQ=AE=12AB,点E是AB的中点,过点E作EF⊥BQ于点F,EM⊥AO于点M,过点Q作QH⊥OP于点H,可证△EMA≌△EFB,求出EF的值,PH的值,有EF(3)如图,由旋转的性质可知AP=AP',AP'∥PQ,P'Q∥AP,证△P'QA≌△PAQ,可知P'Q=AP,P'Q=AP=P'A,过点A作AG⊥BQ于G,设(1)解:∵△ABQ是直角三角形,点A4,∴①当∠BQA=90°时,AQ⊥BQ∵BQ∥x轴∴点坐标为4,3;②当∠BAQ=90°时,BA⊥AQ,如图过点Q作QC⊥OA,垂足为C在Rt△AOB中,由勾股定理知AB=设AC=x,在Rt△ACQ中,由勾股定理知A在Rt△ABQ中,由勾股定理知B∴4+x解得x=∴AC∴OC=OA+AC=∴点坐标为254,3综上所述,点坐标为4,3或254,3(2)解:如图,点P翻折后落在线段AB上的点E处,则∠EAQ又∵BQ∥OP∴∠PAQ∴∠EAQ∴AB∴AP∴点E是AB的中点过点E作EF⊥BQ于点F,EM⊥AO于点M,过点Q作QH⊥OP于点H,在△EMA和△EFB中∵∠AEM=∠BEF∴△EMA≌△EFB∴EF=EM=∴EF=3∵PH=OA+AP−OH=3∴EF在Rt△EQF和Rt△PHQ中∵EF=HP∴Rt△EQF≌Rt△PHQ∴∠EQF∴∠PQE∴∠AQP=(3)解:如图由旋转的性质可知AP=A∵A∴∠在△AP'Q∠∴△∴P∴P过点A作AG⊥BQ于G设AP=A∴BQ=2t在Rt△AGP'中,A解得t=∴OP=OA+AP=4+∴点P、Q的坐标分别为57设过点P、Q的直线解析式为将P、Q两点坐标代入得57解得:k=−∴过点P、Q的直线解析式为y=−24【点睛】本题考查了翻折的性质,三角形全等,勾股定理,一次函数等知识.解题的关键在于将知识灵活综合运用.4、(1)①见解析;②见解析(2)是,见解析(3)【解析】【分析】(1)①根据DE∥AB,得出∠EDC=∠ABM,根据CE∥AM,∠ECD=∠ADB,根据AM是△ABC的中线,且D与M重合,得出BD=DC,再证△ABD≌△EDC(ASA)即可;②由①得△ABD≌△EDC,得出AB=ED,根据AB∥ED,即可得出结论.(2)如图,设延长BM交EC于点F,过M作ML∥DC交CF于L,先证四边形MDCL为平行四边形,得出ML=DC=BD,可证△BMD≌△MFL(AAS),再证△ABM≌△EMF(ASA),可证四边形ABME是平行四边形;(3)过点D作DG∥BN交AC于点G,根据M为AD的中点,DG∥MN,得出MN为三角形中位线MN=DG,根据D为BC的中点,得出DG=BN,可得MN=BN,可求即可.(1)证明:①∵DE∥AB,∴∠EDC=∠ABM,∵CE∥AM,∴∠ECD=∠ADB,∵AM是△ABC的中线,且D与M重合,∴BD=DC,在△ABD与△EDC中,,∴△ABD≌△EDC(ASA),即△ABM≌△EMC;②由①得△ABD≌△EDC,∴AB=ED,∵AB∥ED,∴四边形ABDE是平行四边形;(2)成立.理由如下:如图,设延长BM交EC于点F,过M作ML∥DC交CF于L,∵AD∥EC,ML∥DC,∴四边形MDCL为平行四边形,∴ML=DC=BD,∵ML∥DC,∴∠FML=∠MBD,∵AD∥EC,∴∠BMD=∠MFL,∠AMB=∠EFM,在△BMD和△MFL中∠MBD=∠FML∠BMD=∠MFL∴△BMD≌△MFL(AAS),∴BM=MF,∵AB∥ME,∴∠ABM=∠EMF,在△ABM和△EMF中,∴△ABM≌△EMF(ASA),∴AB=EM,∵AB∥EM,∴四边形ABME是平行四边形;(3)解:过点D作DG∥BN交AC于点G,∵M为AD的中点,DG∥MN,∴MN=DG,∵D为BC的中点,∴DG=BN,∴MN=BN,∴,由(2)知四边形ABME为平行四边形,∴BM=AE,∴.【点睛】本题考查三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质,掌握三角形中线性质,平行线性质,三角形全等判定与性质,平行四边形判定,三角形中位线性质是解题关键.5、(1)见解析,(2)见解析,【解析】【分析】(1)把△ABO的三个顶点A、B、O分别向平移5个单位,向上平移1个单位,得到对应点A1、B1、C1,依次连接这三个点即可得到△A1B1C1,即可写出点B1的坐标;(2)把△A1B1C1的三个顶点A1、B1、C1沿着x轴翻折后得到A2、B2、C2依次连接这三点,得到△A2B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论