版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市西城区育才学校7年级数学下册第五章生活中的轴对称达标测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、第24届冬奥会将于2022年2月4日至20日在北京市和张家口市联合举行.下面是从历届冬奥会的会徽中选取的部分图形,其中是轴对称图形的是()A. B. C. D.2、下列标志图案属于轴对称图形的是()A. B. C. D.3、如图,△ABC与△A′B′C′关于直线MN对称,BB′交MN于点O,则下列结论不一定正确的是()A.AC=A′C′ B.BO=B′O C.AA′⊥MN D.ABB′C′4、下面所给的银行标志图中是轴对称图形的是()A. B. C. D.5、下列图形中,不是轴对称图形的是().A. B. C. D.6、在平面直角坐标系中,点P(﹣2,3)关于x轴对称的点是()A.(﹣2,﹣3) B.(2,3) C.(﹣3,﹣2) D.(2,﹣3)7、下列图形中不是轴对称图形的是().A. B. C. D.8、下列图形中,是轴对称图形的是()A. B. C. D.9、如图所示图形中轴对称图形是()A. B. C. D.10、如图,AD,BE,CF依次是ABC的高、中线和角平分线,下列表达式中错误的是()A.AE=CE B.∠ADC=90° C.∠CAD=∠CBE D.∠ACB=2∠ACF第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图,在长方形ABCD中,AD=BC=5,AB=CD=12,AC=13,动点M在线段AC上运动(不与端点重合),点M关于边AD,DC的对称点分别为M1,M2,连接M1M2,点D在M1M2上,则在点M的运动过程中,线段M1M2长度的最小值是_______.2、如图,直线AD为ABC的对称轴,BC=6,AD=4,则图中阴影部分的面积为__________.3、如图,方格纸中的每个小方格的边长为1,△ABC是格点三角形(即顶点恰好是小方格的顶点).若格点△ACP与△ABC全等(不与△ABC重合),则所有满足条件的点P有_____个.4、如图,△ABC中,AD、BD、CD分别平分△ABC的外角∠CAE、内角∠ABC、外角∠ACF,AD∥BC.以下结论:①∠ABC=∠ACB;②∠ADC+∠ABD=90°;③BD平分∠ADC;④2∠BDC=∠BAC.其中正确的结论有____________.(填序号)5、小聪在研究题目“如图,在等腰三角形ABC中,,,的平分线与AB的垂直平分线OD交于点O,点C沿直线EF折叠后与点O重合,你能得出那些结论?”时,发现了下面三个结论:①;②图中没有60°的角;③D、O、C三点共线.请你直接写出其中正确的结论序号:______6、正方形再任意涂黑一个,则所得黑色图案是轴对称图形的情况有______种.7、如图,在△ABC中,点D,E分别在边AB,BC上,点A与点E关于直线CD对称.若AB=8cm,AC=10cm,BC=14cm,则△DBE的周长为___.8、如图,将沿、翻折,顶点均落在点O处,且与重合于线段,若,则的度数_____.9、如图,三角形纸片中,,,.沿过点的直线折叠这个三角形,使点落在边上的处,折痕为,则周长为__________.10、如图,△ABD和△ACD关于直线AD对称,若S△ABC=12,则图中阴影部分面积为___.三、解答题(6小题,每小题10分,共计60分)1、如图所示,由每一个边长均为1的小正方形构成的8×8正方形网格中,点A,B,C,M,N均在格点上(小正方形的顶点为格点),利用网格画图.(1)画出ABC关于直线MN对称的;(2)在线段MN上找一点P,使得∠APM=∠CPN.(保留必要的画图痕迹,并标出点P位置)2、如图,方格纸中每个小方格都是边长为1的正方形,四边形ABCD的顶点与点E都是格点.(1)作出四边形ABCD关于直线AC对称的四边形AB′CD′;(2)求四边形ABCD的面积;(3)若在直线AC上有一点P,使得P到D、E的距离之和最小,请作出点P的位置.3、(阅读与理解)折纸,常常能为证明一个命题提供思路和方法,例如,在△ABC中,AB>AC(如图),怎样证明∠C>∠B呢?(分析)把AC沿∠A的角平分线AD翻折,因为AB>AC,所以点C落在AB上的点C’处,即AC=AC’,据以上操作,易证明△ACD≌△AC’D,所以∠AC’D=∠C,又因为∠AC’D>∠B,所以∠C>∠B.(感悟与应用)(1)如图(1),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,试判断AC和AD、BC之间的数量关系,并说明理由;(2)如图(2),在四边形ABCD中,AC平分∠DAB,CD=CB.求证:∠B+∠D=180°.4、综合与应用:根据下面给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数:点A表示__________,点B表示_______.(2)观察数轴,与点A的距离为4的点表示的数是_________和___________.(3)若将数轴折叠,使得点A与表示的点重合,则点B与数_________表示的点重合.(4)若数轴上M,N两点之间的距离为2020(点M在点N的左侧),且M,N两点经过(3)中的折叠后互相重合,则M、N两点表示的数分别是什么?5、如图所示,把一块长方形纸片ABCD沿EF折叠,∠EFG=50°,求∠DEG和∠BGM的大小.6、如图.在7×7的正方形网格中,点A、B、C都在格点上,点D是AB与网格线的交点且AB=5,仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)作AB边上高CE.(2)画出点D关于AC的对称点F;(3)在AB上画点M,使BM=BC;(4)在△ABC内画点P,使S△ABP=S△ACP=S△BCP.-参考答案-一、单选题1、B【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行逐一判断即可.【详解】解:A、不是轴对称图形,故此选项不符合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项符合题意;故选B.【点睛】本题主要考查了轴对称图形的定义,熟知定义是解题的关键.2、B【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】选项B能找到这样的一条直线,使图形沿着一条直线对折后两部分完全重合,选项A、C、D均不能找到这样的一条直线,所以不是轴对称图形,故选:B.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3、D【分析】根据轴对称的性质解答.【详解】解:∵△ABC与△A′B′C′关于直线MN对称,BB′交MN于点O,∴AC=A′C′,BO=B′O,AA′⊥MN,但ABB′C′不正确,故选:D.【点睛】此题考查了轴对称的性质:轴对称两个图形的对应边相等,对应角相等,熟记性质是解题的关键.4、B【分析】根据轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,逐项分析判断即可.【详解】解:A.不是轴对称图形,故该选项不正确,不符合题意;B.是轴对称图形,故该选项正确,符合题意;C.不是轴对称图形,故该选项不正确,不符合题意;D.不是轴对称图形,故该选项不正确,不符合题意;故选B【点睛】本题考查了轴对称图形的识别,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5、A【详解】解:A、不是轴对称图形,故本选项符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意;故选:A【点睛】本题主要考查了轴对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形是解题的关键.6、A【分析】根据关于x轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数,即可得出结论.【详解】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3)故选A.【点睛】本题考查的是求一个点关于x轴对称点的坐标,掌握关于x轴对称的两点坐标关系是解题的关键.7、C【分析】根据称轴的定义进行分析即可.【详解】解:A.是轴对称图形,故本选项不符合题意;B.是轴对称图形,故本选项不符合题意;C.不是轴对称图形,故本选项符合题意;D.是轴对称图形,故本选项不符合题意;故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8、D【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:选项A、B、C均不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;选项D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:D.【点睛】本题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9、C【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行逐一判断即可【详解】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不符合题意;故选C.【点睛】本题主要考查了轴对称图形的识别,熟知轴对称图形的定义是解题的关键.10、C【分析】根据三角形的高、中线和角平分线的定义(1)三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫做三角形的角平分线;(2)三角形的中线定义:在三角形中,连接一个顶点和它所对边的中点的连线段叫做三角形的中线;(3)三角形的高定义:从三角形一个顶点向它的对边(或对边所在的直线)作垂线,顶点和垂足间的线段叫做三角形的高线,简称为高.求解即可.【详解】解:A、BE是△ABC的中线,所以AE=CE,故本表达式正确;B、AD是△ABC的高,所以∠ADC=90,故本表达式正确;C、由三角形的高、中线和角平分线的定义无法得出∠CAD=∠CBE,故本表达式错误;D、CF是△ABC的角平分线,所以∠ACB=2∠ACF,故本表达式正确.故选:C.【点睛】本题考查了三角形的高、中线和角平分线的定义,是基础题,熟记定义是解题的关键.二、填空题1、【分析】过D作于,连接,根据题意可得,从而可以判定M1M2最小值为,即可求解.【详解】解:过D作于,连接,如图:长方形ABCD中,AD=BC=5,AB=CD=12,AC=13,∴∴,∵M关于边AD,DC的对称点分别为M1,M2,∴DM1=DM=DM2,∴,线段M1M2长度最小即是DM长度最小,此时DM⊥AC,即M与重合,M1M2最小值为.故答案为:.【点睛】此题考查了轴对称的性质,掌握轴对称的有关性质将的最小值转化为的最小值是解题的关键.2、6【分析】根据轴对称的性质判断出阴影部分的面积的和等于三角形的面积的一半,AD⊥BC,然后根据三角形的面积列式计算即可得解.【详解】解:∵AD所在的直线是△ABC的对称轴,∴阴影部分的面积的和等于三角形的面积的一半,AD⊥BC,∴阴影部分的面积和=×(×6×4)=6.故答案为:6.【点睛】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.3、3【分析】如图,把沿直线对折可得:把沿直线对折,从而可得答案.【详解】解:如图,把沿直线对折可得:把沿直线对折可得:所以符合条件的点有3个,故答案为:3【点睛】本题考查的轴对称的性质,全等三角形的概念,掌握“利用轴对称的性质确定全等三角形”是解本题的关键.4、①②④【分析】根据角平分线的定义得到∠EAD=∠CAD,根据平行线的性质得到∠EAD=∠ABC,∠CAD=∠ACB,求得∠ABC=∠ACB,故①正确;根据角平分线的定义得到∠ADC=90°∠ABC,求得∠ADC+∠ABD=90°故②正确;根据全等三角形的性质得到AB=CB,与题目条件矛盾,故③错误,根据角平分线的定义和三角形外角的性质即可得到2∠BDC=∠BAC,故④正确.【详解】解:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠EAD=∠ABC,∠CAD=∠ACB,∴∠ABC=∠ACB,故①正确;∵AD,CD分别平分∠EAC,∠ACF,∴可得∠ADC=90°∠ABC,∴∠ADC+∠ABC=90°,∴∠ADC+∠ABD=90°,故②正确;∵∠ABD=∠DBC,BD=BD,∠ADB=∠BDC,∴△ABD≌△BCD(ASA),∴AB=CB,与题目条件矛盾,故③错误,∵∠DCF=∠DBC+∠BDC,∠ACF=∠ABC+∠BAC,∴2∠DCF=2∠DBC+2∠BDC,2∠DCF=2∠DBC+∠BAC,∴2∠BDC=∠BAC,故④正确,故答案为:①②④.【点睛】本题考查了三角形的外角的性质,平行线的性质,角平分线的定义,正确的识别图形是解题的关键.5、①【分析】根据题意先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质即可得出,进而再判断②③即可.【详解】解:∵∠BAC=50°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×50°=25°.又∵AB=AC,∴∠ABC=∠ACB=65°.∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC-∠ABO=65°-25°=40°.∵AO为∠BAC的平分线,AB=AC,∴直线AO垂直平分BC,∴OB=OC,∴∠OCB=∠OBC=40°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;在△OCE中,∠OEC=180°-∠COE-∠OCB=180°-40°-40°=100°,∴∠OEF=∠CEO=50°,①正确;∵∠OCB=∠OBC=∠COE=40°,∴∠BOE=180°-∠OBC-∠COE-∠OCB=180°-40°-40°-40°=60°,②错误;∵∠ABO=∠BAO=25°,DO是AB的垂直平分线,∴∠DOB=90°-∠ABO=75°,∵∠OCB=∠OBC=40°,∴∠BOC=180°-∠OBC-∠OCB=180°-40°-40°=100°,∴∠DOC=∠DOB+∠BOC=75°+100°=175°,即D、O、C三点不共线,③错误.故答案为:①.【点睛】本题考查等腰三角形的性质和三角形内角和180°以及翻折变换及其应用,解题的关键是根据翻折变换的性质,找出图中隐含的等量关系,灵活运用有关定理来分析判断.6、4【分析】利用轴对称图形定义进行补图即可.【详解】解:如图所示:,共4种,故答案为:4.【点睛】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.7、【分析】根据对称的性质可得,,进而可得的长,根据三角形的周长公式计算即可求得△DBE的周长【详解】解:∵点A与点E关于直线CD对称,∴,BC=14△DBE的周长为故答案为:【点睛】本题考查了轴对称的性质,理解对称的性质是解题的关键.8、47°【分析】由翻折的性质可得∠A=∠DOE,∠B=∠EOF,可得∠DOF=∠A+∠B,由三角形内角和定理可得∠A+B=180°−∠C,即可求∠C的度数.【详解】解:∵将△ABC沿DE,EF翻折,顶点A,B均落在点O处,∴∠A=∠DOE,∠B=∠EOF,∴∠DOF=∠A+∠B∵∠A+∠B+∠C=180°∴∠A+B=180°−∠C∵∠DOF=∠C+∠CDO+∠COF=180°−∠C∴∠C+86°=180°−∠C∴∠C=47°故答案为:47°【点睛】本题考查了翻折的性质,三角形内角和定理,熟练运用三角形内角和定理是本题的关键.9、13【分析】由对折可得:再求解从而可得答案.【详解】解:由对折可得:故答案为:【点睛】本题考查的是轴对称的性质,根据轴对称的性质得到是解本题的关键.10、6【分析】根据轴对称的性质可得,,由此即可得出答案.【详解】解:和关于直线对称,,,,则图中阴影部分面积为,故答案为:6.【点睛】本题考查了轴对称的性质,熟练掌握轴对称的性质是解题关键.三、解答题1、(1)见解析;(2)见解析【分析】(1)分别作出三个顶点关于直线MN的对称点,再首尾顺次连接即可;(2)连接A′C,与直线MN的交点即为所求.【详解】解:(1)如图所示,△A′B′C′即为所求.(2)如图所示,点P即为所求.【点睛】此题考查作图能力,作图形的轴对称图形,轴对称的性质,对顶角相等的性质,正确掌握轴对称的性质是解题的关键.2、(1)见解析;(2)9;(3)见解析【分析】(1)分别作出两点关于直线的对称点,连接,四边形AB′CD′即为所求四边形;(2)根据网格的特点,S四边形ABCD=S△ABD+S△BCD即可求得答案;(3)连接与直线交于点,由,可得P到D、E的距离之和最小,则点即为所求作的点.【详解】(1)如图,分别作出两点关于直线的对称点,连接,四边形AB′CD′即为所求四边形;(2)S四边形ABCD=S△ABD+S△BCD==9;(3)如图,连接与直线交于点,由,可得P到D、E的距离之和最小,则点即为所求作的点;【点睛】本题考查了轴对称作图,轴对称的性质,求网格中四边形的面积,掌握轴对称的性质是解题的关键.3、(1)AC+AD=BC;(2)证明见解答过程;【分析】(1)把AC沿∠ACB的角平分线CD翻折,点A落在BC上的点A′处,连接A′D,根据直角三角形的性质求出∠A,根据三角形的外角性质得到∠A′DB=∠B,根据等腰三角形的判定定理得到A′D=A′B,结合图形计算,证明结论;(2)将AD沿AC翻折,使D落在AB上的D′处,连接CD′,根据全等三角形的性质得到CD=CD′=BC,∠D=∠AD′C,进而证明结论;【详解】(1)解:AC+AD=BC,理由如下:如图,把AC沿∠ACB的角平分线CD翻折,点A落在BC上的点A′处,连接A′D,∵∠ACB=90°,∠B=30°,∴∠A=90°-∠B=60°,由折叠的性质可知,CA′=CA,A′D=AD,∠CA′D=∠A=60°,∵∠B=30°,∴∠A′DB=∠CA′D-∠B=30°,∴∠A′DB=∠B,∴A′D=A′B,∴AD=A′B,∴BC=CA′+A′B=AC+AD;(2)证明:如图,将AD沿AC翻折,使D落在AB上的D′处,连接CD′,则△ADC≌△AD′C,∴CD=CD′=BC,∠D=∠AD′C,∴∠B=∠BD′C,∵∠BD′C+∠AD′C=180°,∴∠B+∠D=180°.【点睛】本题考查的是翻折变换的性质、等腰三角形的性质,掌握翻折变换的性质是解题的关键.4、(1)1,-2.5;(2)-3,5;(3)0.5;(4)M表示的数为-1011;N表示的数为1009【分析】(1)根据数轴的性质读数,即可得到答案;(2)根据数轴和绝对值的性质计算,即可得到答案;(3)根据数轴的性质计算,即可得到答案;(4)根据数轴和绝对值的性质,结合题意,通过列方程并求解,即可得到答案.【详解】解:(1)根据数轴性质,读数得:A:1;B:-2.5,故答案是:1,-2.5;(2)假设与点A的距离为4的数为:x∵∴或∴或即与点A的距离为4的点表示的数是:5或-3,故答案是:5或-3,(3)∵A点与-3表示的点重合,且A点与-3距离为4∴A点与-3之间的中心点为:-1∴数轴以-1为中心折叠∵折叠后重合的点到点-1的距离相等又∵B点到-1点的距离为:设和B点重合的点为:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公务员省考规律题库及答案
- 2025年辽宁省事业单位招聘考试模拟试卷 公共某础知识(三)附答案详解(达标题)
- 2025广东广州市政协办公厅直属事业单位第一次招聘2人参考题库及完整答案详解
- 2026年邯郸应用技术职业学院单招职业适应性考试必刷测试卷汇编
- 2026年吉林省白山市单招职业倾向性测试必刷测试卷及答案1套
- 2026年辽宁民族师范高等专科学校单招职业倾向性考试必刷测试卷完美版
- 2025年江西省省直事业单位招聘考试真题题库 公共基础知识及答案详解(网校专用)
- 2026年闽西职业技术学院单招职业适应性测试题库附答案
- 2026年马鞍山师范高等专科学校单招职业倾向性考试题库带答案
- 2026年惠州城市职业学院单招职业倾向性考试题库带答案
- 机房设备维护及运维管理手册
- 台海形势的形与势课件
- 2025青鸟消安AI产品手册
- 《筑牢网络防线守护绿色童年》主题班会
- 吊篮安拆安全培训课件
- 太阳能热水工程系统安装与验收规范
- 2025年秋期新教材人音版三年级上册小学音乐教学计划+进度表
- 数字化公共文化服务-洞察及研究
- 小学榫卯木工课件
- 消费主义的再生产机制-洞察及研究
- 成都双流国际机场
评论
0/150
提交评论