解析卷冀教版8年级下册期末试题及参考答案详解【B卷】_第1页
解析卷冀教版8年级下册期末试题及参考答案详解【B卷】_第2页
解析卷冀教版8年级下册期末试题及参考答案详解【B卷】_第3页
解析卷冀教版8年级下册期末试题及参考答案详解【B卷】_第4页
解析卷冀教版8年级下册期末试题及参考答案详解【B卷】_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

冀教版8年级下册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、某学校对八年级1班50名学生进行体能评定,进行了“长跑”、“立定跳远”、“跳高”的测试,根据测试总成绩划分体能等级,等级分为“优秀”、“良好”、“合格”、“较差”四个等级,该班级“优秀”的有28人,“良好”的有15人,“合格”的有5人,则该班级学生这次体能评定为“较差”的频率是()A.2 B.0.02 C.4 D.0.042、点关于轴对称的点是()A. B. C. D.3、某商场为了增加销售额,推出“元旦销售大酬宾”活动,其活动内容为:“凡一月份在该商场一次性购物超过100元以上者,超过100元的部分按9折优惠.”在大酬宾活动中,小王到该商场为单位购买单价为60元的办公用品x件(x>2),则应付货款y(元)与商品件数x的函数关系式()A.y=54x(x>2) B.y=54x+10(x>2)C.y=54x-90(x>2) D.y=54x+100(x>2)4、能清楚地反映漳州市近三年初中毕业学生人数的变化情况,应绘制()A.条形统计图 B.扇形统计图 C.折线统计图 D.直方图5、如图,在平面直角坐标系中.△MNP绕原点逆时针旋转90°得到△M1N1P1,若M(1,﹣2).则点M1的坐标为()A.(﹣2,﹣1) B.(1,2) C.(2,1) D.(﹣1,﹣2)6、已知正比例函数的图像经过点(2,4)、(1,)、(1,),那么与的大小关系是()A. B. C. D.无法确定7、甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,或.其中正确的结论有()A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、在函数y=中,自变量x的取值范围是_____.2、如果点P1(3,y1),P2(2,y2)在一次函数y=8x-1的图像上,那么y1______y2.(填“>”、“<”或“=”)3、如图,直线与相交于点,则关于x,y的二元一次方程组的解为______.4、函数和的图象相交于点,则方程的解为______.5、已知点A的坐标是A(﹣2,4),线段轴,且AB=5,则B点的坐标是____.6、如图,,矩形的顶点、分别在边、上,当在边上运动时,随之在上运动,矩形的形状保持不变,其中,.在运动过程中:(1)斜边中线的长度是否发生变化___(填“是”或“否”);(2)点到点的最大距离是___.7、如图,正方形ABCD中,E是BC边上的一点,连接AE,将AB边沿AE折叠到AF.延长EF交DC于G,点G恰为CD边中点,连接AG,CF,AC.若AB=6,则△AFC的面积为_______.8、在平面直角坐标系中,点A(-2,4),点B(4,2),点P为x轴上一动点,当PA+PB的值最小时,此时点P的坐标为____________.三、解答题(7小题,每小题10分,共计70分)1、如图所示,在四边形ABCD中,∠A=80°,∠C=75°,∠ADE为四边形ABCD的一个外角,且∠ADE=125°,试求出∠B的度数.2、已知正多边形的内角和比外角和大720°,求该正多边形所有对角线的条数.3、在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程,以下是我们研究函数的性质及其应用的部分过程,请按要求完成下列各小题.x…﹣4﹣3﹣2﹣1012345…y…6a0﹣1.5﹣2﹣1.5020b…(1)表中a=;b=;(2)根据表中的数据画出该函数的大致图象,并根据函数图象写出该函数的一条性质.(3)已知直线的图象如图所示,结合你所画的函数图象,当y1>y2时直接写出x的取值范围.(保留1位小数,误差不超过0.2)4、如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.(1)试用含t的式子表示AE、AD、DF的长;(2)如图①,连接EF,求证四边形AEFD是平行四边形;(3)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.5、如图,在△ABC中,AC=2,AB=4,BC=6,点P为边BC上的一个动点(不与点B、C重合),点P关于直线AB的对称点为点Q,联结PQ、CQ,PQ与边AB交于点D.(1)求∠B的度数;(2)联结BQ,当∠BQC=90°时,求CQ的长;(3)设BP=x,CQ=y,求y关于x的函数解析式,并写出函数的定义域.6、如图,在中,于点E,延长BC至点F,使,连接AF,DE,DF.(1)求证:四边形AEFD为矩形;(2)若,,,求DF的长.7、平面直角坐标系中有点、,连接AB,以AB为直角边在第一象限内作等腰直角三角形,则点C的坐标是_________.-参考答案-一、单选题1、D【解析】【分析】先求解该班级学生这次体能评定为“较差”的频数,再利用频率=落在某小组的频数除以数据的总数,从而可得答案.【详解】解:该班级学生这次体能评定为“较差”的频数是:则该班级学生这次体能评定为“较差”的频率是:故选D【点睛】本题考查的是已知频数与数据的总数求解频率,掌握“频率=落在某小组的频数除以数据的总数”是解本题的关键.2、C【解析】【分析】由题意可分析可知,关于轴对称的点,纵坐标相同,横坐标互为相反数.【详解】解:根据轴对称的性质,得点关于轴对称的点是.故选:C.【点睛】本题考查了对称点的坐标规律,解题的关键是掌握相应的规律:(1)关于轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.3、B【解析】【分析】由题意得,则销售价超过100元,超过的部分为,即可得.【详解】解:∵,∴销售价超过100元,超过的部分为,∴(且为整数),故选B.【点睛】本题考查了一次函数的应用,解题的关键是理解题意,找出等量关系.4、C【解析】【分析】根据统计图的特点解答.【详解】解:能清楚地反映漳州市近三年初中毕业学生人数的变化情况,应绘制折线统计图,故选:C.【点睛】此题考查了统计图的特点,条形统计图能够直观地反映各变量数量的差异,折线图能直观反映各变量的变化趋势,扇形统计图能清楚地表示各部分在总体中所占的百分比,直方图体现个体的数量,熟记每种统计图的特点是解题的关键.5、C【解析】【分析】连接OM,OM1,分别过M和M1作y轴的垂线,垂足为A,B,证明△OAM1≌△MBO,得到OA=BM=1,AM1=OB=2,从而可得M1坐标.【详解】解:如图,连接OM,OM1,分别过M和M1作y轴的垂线,垂足为A,B,由旋转可知:∠MOM1=90°,OM=OM1,则∠AOM1+∠BOM=90°,又∠AOM1+∠AM1O=90°,∴∠AM1O=∠BOM,又∵∠OAM1=∠OBM=90°,OM=OM1,∴△OAM1≌△MBO(AAS),∴OA=BM=1,AM1=OB=2,∴M1(2,1),故选C.【点睛】本题考查了坐标与图形—旋转,全等三角形的判定和性质,解题的关键是利用旋转的性质得到全等三角形的条件.6、A【解析】【分析】先求出正比例函数解析式根据正比例函数的图象性质,当k<0时,函数随x的增大而减小,可得y1与y2的大小.【详解】解:∵正比例函数的图像经过点(2,4)、代入解析式得解得∴正比例函数为∵<0,∴y随x的增大而减小,由于-1<1,故y1<y2.故选:A.【点睛】本题考查了正比例函数图象上点的坐标特征,用到的知识点为:正比例函数的图象,当k<0时,y随x的增大而减小是解题关键.7、B【解析】【分析】当不动时,距离300千米,就是A,B两地的距离;甲匀速运动,走完全程用时5小时,乙走完全程用时3小时,确定甲,乙的函数解析式,求交点坐标;分甲出发,乙未动,距离为50千米,甲出发,乙出发,且甲在前50距离50千米,甲在后距离50千米,乙到大时距离为50千米四种情形计算即可.【详解】∵(0,300)表示不动时,距离300千米,就是A,B两地的距离,∴①正确;∵甲匀速运动,走完全程用时5小时,乙走完全程用时3小时,∴乙车比甲车晚出发1小时,却早到1小时;∴②正确;设,∴300=5m,解得m=60,∴;设,∴解得,∴;∴解得t=2.5,∴2.5-1=1.5,∴乙车出发后1.5小时追上甲车;∴③错误;当乙未出发时,,解得t=;当乙出发,且在甲后面时,,解得t=;当乙出发,且在甲前面时,,解得t=;当乙到大目的地,甲自己行走时,,解得t=;∴④错误;故选B.【点睛】本题考查了函数的图像,一次函数的解析式确定,交点的意义,熟练掌握待定系数法,准确捕获图像信息是解题的关键.二、填空题1、x≠【解析】【分析】根据分式分母不为0列出不等式,解不等式得到答案.【详解】解:由题意得:3x−4≠0,解得:x≠,故答案为:x≠.【点睛】本题考查的是函数自变量的取值范围的确定,掌握分式分母不为0是解题的关键.2、【解析】【分析】先求出y1,y2的值,再比较出其大小即可.【详解】解:∵点P1(3,y1)、P2(2,y2)在一次函数y=8x-1的图象上,∴y1=8×3-1=23,y2=8×2-1=15,∵23>15,∴y1>y2.故答案为:>.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.3、【解析】【分析】根据两条直线相交与二元一次方程组的关系即可求得二元一次方程组的解.【详解】∵直线与相交于点∴的坐标既满足,也满足∴是方程组的解故答案为:【点睛】本题考查了两条直线相交与二元一次方程组的关系,理解这个关系是关键.4、【解析】【分析】由题意知,方程的解为其交点的横坐标,进而可得结果.【详解】解:由题意知的解为两直线交点的横坐标故答案为:.【点睛】本题考查了一次函数图象的交点与一次方程解的关系.解题的关键在于理解一次函数图象的交点与一次方程解的关系.5、(﹣2,﹣1)或(﹣2,9)##(﹣2,9)或(﹣2,﹣1)【解析】【分析】根据A的坐标和轴确定横坐标,根据AB=5可确定B点的纵坐标.【详解】解:∵线段轴,A的坐标是A(﹣2,4),∴B点的横坐标为﹣2,又∵AB=5,∴B点的纵坐标为﹣1或9,∴B点的坐标为(﹣2,﹣1)或(﹣2,9),故答案为:(﹣2,﹣1)或(﹣2,9).【点睛】本题考查了坐标与图形的性质,熟练掌握与坐标轴平行的点的坐标特点是解题的关键.平行于x轴的直线上的任意两点的纵坐标相同;平行于y轴的直线上任意两点的横坐标相同.6、否【解析】【分析】(1)设斜边中点为,根据直角三角形斜边中线即可;(2)取的中点,连接、、,根据三角形的任意两边之和大于第三边可知当、、Q三点共线时,点到点的距离最大,再根据勾股定理列式求出的长,根据直角三角形斜边上的中线等于斜边的一半求出的长,两者相加即可得解.【详解】解:(1)如图,设斜边中点为,在运动过程中,斜边中线长度不变,故不变,故答案为:否;(2)连接、、,在矩形的运动过程当中,根据三角形的任意两边之和大于第三边有,当、、三点共线时,则有,此时,取得最大值,如图所示,为中点,,又,,.故答案为:.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半得到性质,三角形的三边关系,矩形的性质,勾股定理,根据三角形的三边关系判断出点、Q、三点共线时,点到点的距离最大是解题的关键.7、3.6##【解析】【分析】首先通过HL证明Rt△ABE≌Rt△AFB,得BE=EF,同理可得:DG=FG,设BE=x,则CE=6﹣x,EG=3+x,在Rt△CEG中,利用勾股定理列方程求出BE=2,S△AFC=S△AEC﹣S△AEF﹣S△EFC代入计算即可.【详解】解:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∵将AB边沿AE折叠到AF,∴AB=AF,∠B=∠AFB=90°,在Rt△ABE和Rt△AFB中,,∴Rt△ABE≌Rt△AFB(HL),∴BE=EF,同理可得:DG=FG,∵点G恰为CD边中点,∴DG=FG=3,设BE=x,则CE=6﹣x,EG=3+x,在Rt△CEG中,由勾股定理得:(x+3)2=32+(6﹣x)2,解得x=2,∴BE=EF=2,CE=4,∴S△CEG=×4×3=6,∵EF∶FG=2∶3,∴S△EFC=×6=,∴S△AFC=S△AEC﹣S△AEF﹣S△EFC=×4×6﹣×2×6﹣=12﹣6﹣=3.6.故答案为:3.6.【点睛】本题考查了三角形全等的性质与判定,勾股定理,正方形的性质,根据勾股定理求得BE的长是解题的关键.8、(2,0)【解析】【分析】作点B关于x轴的对称点B',连接AB′交x轴于点P,则点P即为所求.此时,PA+PB的值最小,可得出B′(4,-2),利用待定系数法求出AB′的解析式,即可得点P的坐标.【详解】作点B关于x轴的对称点B',连接AB′交x轴于点P,则点P即为所求.此时,PA+PB的值最小,∵点B(4,2).∴B′(4,-2),设直线AB′的解析式为y=kx+b,∵点A(-2,4),点B′(4,-2).∴,解得:,∴直线AB′的解析式为y=-x+2,当y=0时,-x+2=0,解得:x=2,∴点P的坐标(2,0);【点睛】本题主要考查最短路线问题;若两点在直线的同一旁,则需作其中一点关于这条直线的对称点.三、解答题1、150°【解析】【分析】先根据邻补角的定义求出∠ADC的度数,再根据四边形的内角和求出∠B的度数.【详解】解:∵∠ADE为四边形ABCD的一个外角,且∠ADE=125°,∴∠ADC=180°-∠ADE=55°,∵∠A+∠B+∠C+∠ADE=360°,∴∠B=360°-∠A-∠C-∠ADE=360°-80°-75°-55°=150°.【点睛】此题考查了多边形外角定义,多边形的内角和,熟记多边形的内角和进行计算是解题的关键.2、20条【解析】【分析】多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,根据正多边形内角和与外角和的差等于720°,列方程求出正多边形的边数.然后根据n边形共有条对角线,得出此正多边形的所有对角线的条数.【详解】解:设此正多边形为正n边形.由题意得:,解得n=8,∴此正多边形所有的对角线条数为:=20.答:这个正多边形的所有对角线有20条.【点睛】此题考查多边形的边数与对角线条数,一元一次方程,解题关键在于掌握多边形内角和公式和外角和,以及对角线条数计算公式..3、(1)2.5;﹣2(2)见解析(3)x<﹣2或1.5<x<5【解析】【分析】(1)根据解析式计算即可;(2)利用描点法画出函数图象,观察图象可得函数的一条性质;(3)根据图象即可求解.(1)解:当x=﹣3时,y1=×(﹣3)2﹣2=2.5,∴a=2.5,当x=5时,y1=2﹣2×|5﹣3|=﹣2,∴b=﹣2,故答案为:2.5,﹣2;(2)解:画出函数图象如图所示:由图象得:x<0时,y随x的增大而减小;(3)画出直线的图象如图所示,由图象可知,当y1>y2时,x的取值范围为:x<﹣2或1.5<x<5.【点睛】本题考查函数图象和性质,能够从表格中获取信息,利用描点法画出函数图象,并结合函数图象解题是关键.4、(1)AE=t,AD=12﹣2t,DF=t(2)见解析(3)3,理由见解析【解析】【分析】(1)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;(2)根据对边平行且相等的四边形是平行四边形证明;(3)根据矩形的定义列出方程,解方程即可.(1)解:由题意得,AE=t,CD=2t,则AD=AC﹣CD=12﹣2t,∵DF⊥BC,∠C=30°,∴DF=CD=t;(2)解:∵∠ABC=90°,DF⊥BC,∴AB∥∵AE=t,DF=t,∴AE=DF,∴四边形AEFD是平行四边形;(3)解:当t=3时,四边形EBFD是矩形,理由如下:∵∠ABC=90°,∠C=30°,∴AB=AC=6cm,∵BE∥∴BE=DF时,四边形EBFD是平行四边形,即6﹣t=t,解得,t=3,∵∠ABC=90°,∴四边形EBFD是矩形,∴t=3时,四边形EBFD是矩形.【点睛】此题考查了30度角的性质,平行四边形的判定及性质,矩形的定义,一元一次方程,三角形与动点问题,熟练掌握四边形的知识并综合应用是解题的关键.5、(1)30°(2)(3)y=(0<x<6)【解析】【分析】(1)由勾股定理的逆定理可得出,由直角三角形的性质可得出答案;(2)求出,由直角三角形的性质得出.由勾股定理可得出答案;(3)过点作于点,证明为等边三角形,由勾定理得出,则可得出答案.(1)解:,,,,,,,,;(2)解:点关于直线的对称点为点,垂直平分,,,,,,,.;(3)解:过点作于点,,,为等边三角形,,,,,,,,,关于的函数解析式为.【点睛】本题是三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论