考点解析-辽宁省灯塔市中考数学真题分类(勾股定理)汇编章节练习试题(解析卷)_第1页
考点解析-辽宁省灯塔市中考数学真题分类(勾股定理)汇编章节练习试题(解析卷)_第2页
考点解析-辽宁省灯塔市中考数学真题分类(勾股定理)汇编章节练习试题(解析卷)_第3页
考点解析-辽宁省灯塔市中考数学真题分类(勾股定理)汇编章节练习试题(解析卷)_第4页
考点解析-辽宁省灯塔市中考数学真题分类(勾股定理)汇编章节练习试题(解析卷)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省灯塔市中考数学真题分类(勾股定理)汇编章节练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、有一个直角三角形的两边长分别为3和4,则第三边的长为()A.5 B. C. D.5或2、如图,有一只小鸟从小树顶飞到大树顶上,它飞行的最短路程是()A.13米 B.12米 C.5米 D.米3、在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是(

)A.如果∠A-∠B=∠C,那么△ABC是直角三角形B.如果a2=b2-c2,那么△ABC是直角三角形,且∠C=90°C.如果∠A︰∠B︰∠C=1︰3︰2,那么△ABC是直角三角形D.如果a2︰b2︰c2=9︰16︰25,那么△ABC是直角三角形4、如图,长方形纸片ABCD中,AB=3cm,AD=9cm,将此长方形纸片折叠,使点D与点B重合,点C落在点H的位置,折痕为EF,则△ABE的面积为(

)A.6cm2 B.8cm2 C.10cm2 D.12cm25、如图,在由边长为1的7个正六边形组成的网格中,点A,B在格点上.若再选择一个格点C,使△ABC是直角三角形,且每个直角三角形边长均大于1,则符合条件的格点C的个数是(

)A.2 B.4 C.5 D.66、如图,在中,,,,为边上一动点,于,于,为中点,则的最小值为(

).A. B. C. D.7、已知直角三角形的两条边长分别是3和4,那么这个三角形的第三条边的长为(

)A.5 B.25 C. D.5或第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、如图,该图形是由直角三角形和正方形构成,其中最大正方形的边长为7,则正方形A、B、C、D的面积之和为__________.2、如图,在中,,分别以,,边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当,时,阴影部分的面积为________.3、如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了__米.4、勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为______km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为______km.5、如图,某农舍的大门是一个木制的长方形栅栏,它的高为2m,宽为1.5m,现需要在相对的顶点间用一块木板加固,则木板的长为________.6、如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点B′处,则BE的长为________________.7、如图,在四边形ABCD中,,,,,,那么四边形ABCD的面积是___________.8、把两个同样大小含角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点,且另外三个锐角顶点在同一直线上.若,则____.三、解答题(7小题,每小题10分,共计70分)1、若的三边,,满足条件,试判断的形状.2、如图,烟台市正政府决定在相距50km的A、B两村之间的公路旁E点,修建一个大樱桃批发市场,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么大樱桃批发市场E应建什么位置才能符合要求?3、已知:如图,四边形ABCD,∠A=90°,AD=12,AB=16,CD=15,BC=25.(1)求BD的长;(2)求四边形ABCD的面积.4、一个25米长的梯子,斜靠在一竖直的墙上,这时的距离为24米,如果梯子的顶端A沿墙下滑4米,那么梯子底端B外移多少米?5、如图,将RtABC纸片沿AD折叠,使直角顶点C与AB边上的点E重合,若AB=10cm,AC=6cm,求线段BD的长.6、台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向由行驶向,已知点为海港,并且点与直线上的两点,的距离分别为,,又,以台风中心为圆心周围250km以内为受影响区域.(1)求的度数;(2)海港受台风影响吗?为什么?7、勾股定理是人类最伟大的十个科学发现之一,在《周髀算经》中就有“若勾三,股四,则弦五”的记载,汉代数学家赵爽为证明勾股定理创制的“赵爽弦图”也流传至今.迄今为止已有多种证明勾股定理的方法.下面是数学课上创新小组验证过程的一部分.请认真阅读并根据他们的思路将后续的过程补充完整:将两张全等的直角三角形纸片按图所示摆放,其中,点在线段上,点在边两侧,试证明:.-参考答案-一、单选题1、D【解析】【分析】分4是直角边、4是斜边两种情况考虑,再根据勾股定理计算即可.【详解】解:当4是直角边时,斜边==5;当4是斜边时,另一条直角边=;故选:D.【考点】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.2、A【解析】【分析】根据题意,画出图形,构造直角三角形,用勾股定理求解即可.【详解】如图所示,过D点作DE⊥AB,垂足为E,∵AB=13,CD=8,又∵BE=CD,DE=BC,∴AE=AB−BE=AB−CD=13−8=5,∴在Rt△ADE中,DE=BC=12,∴∴AD=13(负值舍去),故小鸟飞行的最短路程为13m,故选A.【考点】考查勾股定理,画出示意图,数形结合是解题的关键.3、B【解析】【分析】根据勾股定理的逆定理、三角形内角和定理、直角三角形定义即可.【详解】解:A、∵∠A-∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,此选项正确;B、如果a2=b2-c2,∴a2+c2=b2,∴△ABC是直角三角形且∠B=90°,此选项不正确;C、如果∠A:∠B:∠C=1:3:2,设∠A=x,则∠B=3x,∠C=2x,则x+3x+2x=180°,解得:x=30°,则3x=90°,∴△ABC是直角三角形,此选项正确;D、如果a2:b2:c2=9:16:25,则a2+b2=c2,∴△ABC是直角三角形,此选项正确;故选:B.【考点】本题考查了三角形内角和,勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4、A【解析】【分析】根据折叠的条件可得:,在中,利用勾股定理就可以求解.【详解】将此长方形折叠,使点与点重合,,,根据勾股定理得:,解得:..故选:A.【考点】本题考查了利用勾股定理解直角三角形,掌握直角三角形两直角边的平方和等于斜边的平方是解题的关键.5、D【解析】【分析】分三种情况讨论,当∠A=90°,或∠B=90°,或∠C=90°时,分别画出符合条件的图形,即可解答.【详解】解:分三种情况讨论,当∠A=90°,或∠B=90°,或∠C=90°如图符合条件的格点C的个数是6个故选:D.【考点】本题考查正多边形和圆的性质、直角三角形的判定与性质、直径所对的圆周角是90°等知识,是基础考点,掌握相关知识是解题关键.6、D【解析】【分析】先根据矩形的判定得出AEPF是矩形,再根据矩形的性质得出EF,AP互相平分,且EF=AP,再根据垂线段最短的性质就可以得出AP⊥BC时,AP的值最小,即AM的值最小,根据面积关系建立等式求出其解即可.【详解】解:如图,连接AP,∵AB=3,AC=4,BC=5,∴∠EAF=90°,∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交点就是M点.∵当AP的值最小时,AM的值就最小,∴当AP⊥BC时,AP的值最小,即AM的值最小.∵AP•BC=AB•AC,∴AP•BC=AB•AC,∵AB=3,AC=4,BC=5,∴5AP=3×4,∴AP=,∴AM=.故选:D.【考点】本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,解题的关键是求出AP的最小值.7、D【解析】【分析】分情况讨论:①当边长为4的边作斜边时;②当边长为4的边作直角边时,利用勾股定理分别求解即可.【详解】解:当边长为4的边作斜边时,第三条边的长度为;当边长为4的边作直角边时,第三条边的长度为;综上分析可知,这个三角形的第三条边的长为5或,故D正确.故选:D.【考点】本题主要考查了勾股定理,掌握分类讨论的思想是解题的关键.二、填空题1、49【解析】【分析】根据正方形A,B,C,D的面积和等于最大的正方形的面积,求解即可求出答案.【详解】如图对所给图形进行标注:因为所有的三角形都是直角三角形,所有的四边形都是正方形,所以正方形A的面积,正方形B的面积,正方形C的面积,正方形D的面积.因为,,所以正方形A,B,C,D的面积和.故答案为:49.【考点】本题主要考查了勾股定理、正方形的性质,面积的计算,掌握勾股定理是解本题的关键.2、24【解析】【分析】根据勾股定理得到AC2=AB2-BC2,先求解AC,再根据阴影部分的面积等于直角三角形的面积加上以AC,BC为直径的半圆面积,再减去以AB为直径的半圆面积即可.【详解】解:由勾股定理得,AC2=AB2-BC2=64,则阴影部分的面积,故答案为24.【考点】本题考查的是勾股定理、半圆面积计算,掌握勾股定理和半圆面积公式是解题的关键.3、9.【解析】【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长.【详解】在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵CD=10(米),∴AD==6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸边移动了9米,故答案为:9.【考点】本题考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.4、

20

13【解析】【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求出x的值.【详解】(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)=20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13.故答案为(1)20;(2)13.【考点】本题考查了勾股定理,解题的关键是根据A、B、C三点的坐标求出相关线段的长度,本题属于中等题型.5、2.5m【解析】【详解】设木棒的长为xm,根据勾股定理可得:x2=22+1.52,解得x=2.5.故木棒的长为2.5m.故答案为2.5m.6、.【解析】【分析】首先根据勾股定理求出BC的长,根据折叠性质,可得=AB=3,=BE,∠B=∠=90°,然后设BE=,根据勾股定理,列出,求解即可.【详解】解:∵∠ABC=90°,AB=3,AC=5,在Rt△ABC中,,将△ABC沿AE折叠,∴=AB=3,=BE,∠B=∠=90°,则,设BE=,EC=4-,,在Rt△中,由勾股定理得:,即,解得,∴BE=.故答案为.【考点】本题主要考查了翻折变换的性质及勾股定理的应用;解题的关键是准确找出图形中隐含的相等关系.7、+24【解析】【分析】连结BD,可求出BD=6,再根据勾股定理逆定理,得出△BDC是直角三角形,两个三角形面积相加即可.【详解】解:连结BD,∵,∴,∵,,∴BD=6,∵BD2=36,CD2=64,BC2=100,BD2+CD2=BC2,∴∠BDC=90°,S△ABD=,S△BDC=,四边形ABCD的面积是=S△ABD+S△BDC=+24故答案为:+24.【考点】本题考查勾股定理以及逆定理,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8、.【解析】【分析】如图,先利用等腰直角三角形的性质求出,,再利用勾股定理求出DF,即可得出结论.【详解】如图,过点作于,在中,,,,两个同样大小的含角的三角尺,,在中,根据勾股定理得,,,故答案为.【考点】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.三、解答题1、三角形为直角三角形,理由见解析【解析】【分析】这是一道有关勾股定理的逆定理、完全平方公式的解答题.把已知条件写成三个完全平方式的和的形式,再由非负数的性质求得三边,根据勾股定理的逆定理即可判断△ABC的形状.【详解】,,即.,,,,,.,,.,,该三角形为直角三角形.【考点】此题主要考查了勾股定理的逆定理、完全平方公式.此题的关键就是灵活掌握完全平方公式的特点,用配方法进行恒等变形,在恒等变形的过程中不要改变式子的值.2、大樱桃批发市场E应建在离A站20千米的地方【解析】【分析】由勾股定理两直角边的平方和等于斜边的平方分别求出和,列等式求解即可.【详解】解:设大樱桃批发市场E应建在离A站x千米的地方,则千米.在直角中,根据勾股定理得:,∴,在直角中,根据勾股定理得:,∴.又∵C、D两村到E点的距离相等,∴,∴,所以,解得.∴大樱桃批发市场E应建在离A站20千米的地方.【考点】本题考查勾股定理的实际应用,掌握两直角边的平方和等于斜边的平方是解题的关键.3、(1)BD=20;(2)S四边形ABCD=246.【解析】【分析】(1)由∠A=90°,AD=12,AB=16,利用勾股定理:BD2=AD2+AB2,从而可得答案;(2)利用勾股定理的逆定理证明:∠CDB=90°,再由四边形的面积等于两个直角三角形的面积之和可得答案.【详解】解:(1)∵∠A=90°,AD=12,AB=16,∴BD2=AD2+AB2,∴BD2=122+162,∴BD=20;(2)∵BD2+CD2=202+152=625,CB2=252=625,∴BD2+CD2=CB2,∴∠CDB=90°,∴S四边形ABCD=SRt△ABD+SRt△CBD,=246.【考点】本题考查的是勾股定理与勾股定理的逆定理的应用,掌握以上知识是解题的关键.4、8米.【解析】【分析】梯子下滑4米,梯子的长度不变始终为25米,利用勾股定理分别求出OB、OB'的长度,进而求出BB'的长度即可.【详解】解:如图,依题意可知AB=25(米),AO=24(米),∠O=90°,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论