




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
华东师大版7年级下册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、整理一批图书,由一个人做要30小时完成,现在计划由一部分人先做2小时,再增加3人和他们一起做4小时,完成这项工作,假设每个人的工作效率相同,具体先安排x人工作,则可列方程为()A. B.C. D.2、下列各式中,一元一次方程是()A.2x=4 B.2﹣=5 C.2x﹣y=6 D.2x﹣y=73、下列等式变形中,不正确的是()A.若,则 B.若,则C.若,则 D.若,则4、关于x的一元一次方程的解是,则的值是()A.4 B.5 C.6 D.75、小杰妈妈去银行存款,银行一年定期储蓄的年利率是1.5%,小杰妈妈两年后取出的本利和共61800元,设她存入银行的本金为x元,那么下列方程中,正确的是()A.x•1.5%×2=61800 B.x+x•1.5%×2=61800C.x•(1+1.5%)×2=61800 D.(1+1.5%x)×2=618006、若不等式(m-2)x>n的解集为x>1,则m,n满足的条件是().A.m=n-2且m>2 B.m=n-2且m<2C.n=m-2且m>2 D.n=m-2且m<27、如图,有一条直的宽纸带,按图折叠,则∠α的度数等于()A.50° B.65° C.75° D.80°8、下列说法正确的是()A.若,则 B.若,则C.是七次三项式 D.当时,第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、数轴上点A表示的数是1,点B表示的数是﹣3,原点为O,若点A和点B分别以每秒2个单位长度的速度和每秒5个单位长度的速度同时向右运动,要使OB=2OA,要经过______秒.2、小杰,小丽两人在400米的环形跑道上练习跑步,小杰每分钟跑300米,小丽每分钟跑150米,两人同时同地同向出发,__分钟后两人第一次相遇.3、用不等式表示:的不大于的3倍_____.4、一年一度的南开校运会即将开幕,“向阳”班的全体同学正在操场上进行开幕式的队列编排.如果安排三个同学走在队列前方举班牌和班旗,则剩下的同学正好可以编排成每行5人的长方形方阵.如果不举班旗,只由班主任兼数学老师李老师举班牌,并再邀请语文,英语和物理三科的任课老师一起参加,则这三位任课老师和所有同学正好可以编排成每行6人的长方形方阵.已知“向阳”班的学生人数超过40人但又不多于80人,则“向阳”班共有学生______名.5、2x-y=3用含x的式子表示y,得____________;用含y的式子表示x,得____________.6、不等式组的解集是_______.7、只含一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做__________.解一元一次不等式,则要根据__________,将不等式逐步化为x>a(x≥a)或x<a(x≤a)的形式.三、解答题(7小题,每小题10分,共计70分)1、解方程:(1)(2)2、如图,点O为直线AB上一点,过点О作射线OC,使得,将一个有一个角为30°直角三角板的直角顶点放在点O处,使边ON在射线OA上,另一边OM在直线AB的下方,将图中的三角板绕点О按顺时针方向旋转180°.(1)三角板旋转的过程中,当时,三角板旋转的角度为;(2)当ON所在的射线恰好平分时,三角板旋转的角度为;(3)在旋转的过程中,与的数量关系为;(请写出所有可能情况)(4)若三角板绕点О按每秒钟20°的速度顺时针旋转,同时射线OC绕点О按每秒钟5°的速度沿顺时针方向,向终边OB运动,当ON与射线OB重合时,同时停止运动,直接写出三角板的直角边所在射线恰好平分时,三角板运动时间为.3、如图,是数轴的原点,、是数轴上的两个点,点对应的数是,点对应的数是,是线段上一点,满足.(1)求点对应的数;(2)动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,当点到达点后停留秒钟,然后继续按原速沿数轴向右匀速运动到点后停止.在点从点出发的同时,动点从点出发,以每秒个单位长度的速度沿数轴匀速向左运动,一直运动到点后停止.设点的运动时间为秒.①当时,求的值;②在点,出发的同时,点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,当点与点相遇后,点立即掉头按原速沿数轴向右匀速运动,当点与点相遇后,点又立即掉头按原速沿数轴向左匀速运动到点后停止.当时,请直接写出的值.4、解方程:(1);(2).5、列方程或方程组解应用题:某校积极推进垃圾分类工作,拟采购30L和120L两种型号垃圾桶用于垃圾投放.已知采购5个30L垃圾桶和9个120L垃圾桶共需付费1000元;采购10个30L垃圾桶和5个120L垃圾桶共需付费700元,求30L垃圾桶和120L垃圾桶的单价.6、【数学概念】如图1,A、B为数轴上不重合的两个点,P为数轴上任意一点,我们比较线段PA和PB的长度,将较短线段的长度定义为点P到线段AB的“靠近距离”.特别地,若线段PA和PB的长度相等,则将线段PA或PB的长度定义为点P到线段AB的“靠近距离”.如图①,点A表示的数是-4,点B表示的数是2.(1)【概念理解】若点P表示的数是-2,则点P到线段AB的“靠近距离”为______;(2)【概念理解】若点P表示的数是m,点P到线段AB的“靠近距离”为3,则m的值为______(写出所有结果);(3)【概念应用】如图②,在数轴上,点P表示的数是-6,点A表示的数是-3,点B表示的数是2.点P以每秒2个单位长度的速度沿数轴向右运动,同时点B以每秒1个单位长度的速度沿数轴向右运动.设运动的时间为t秒,当点P到线段AB的“靠近距离”为2时,求t的值.7、如图,点A在数轴上表示的数是-4,点B在原点右侧且到点A的距离为8,且点B为线段OC的中点.(1)点B在数轴上所表示的数是_________,点C在数轴上所表示的数是________;(2)现有一动点P从点A出发沿数轴以每秒6个单位的速度向右运动,另一动点Q从C点出发沿数轴以每秒2个单位的速度向右运动,点T是线段PQ的中点,设运动时间为t,当时,求出相应t的值;(3)以AB为边在数轴的上方作长方形ABMN,且.现有一动点E从B出发以每秒1个单位的速度沿的方向运动;同时动点F从A点出发,以每秒1个单位的速度沿的方向运动.当点F运动到N点时速度提为每秒4个单位继续运动到点M,然后立即以提速后的速度返回至点N停止运动.当F点停止运动时,点E也随之停止运动,设点F的运动时间为x,请用含x的代数式表示三角形BEF的面积S,并写出对应x的取值范围.-参考答案-一、单选题1、D【解析】【分析】设先安排x人工作,则x人工作2小时完成的工作量为:再增加3人和他们一起做4小时,完成的工作量为:利用两部分工作量之和等于1,从而可得答案.【详解】解:设先安排x人工作,则故选D【点睛】本题考查的是一元一次方程的应用,掌握“工程问题中,各部分的工作量之和等于1”列方程是解本题的关键.2、A【解析】【分析】利用一元一次方程的定义进行解答即可.【详解】解:A、是一元一次方程,故此选项符合题意;B、含有分式,不是一元一次方程,故此选项不合题意;C、含有两个未知数,不是一元一次方程,故此选项不合题意;D、含有两个未知数,不是一元一次方程,故此选项不合题意;故选:A.【点睛】本题主要考查了一元一次方程定义,关键是掌握一元一次方程属于整式方程,即方程两边都是整式.一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.3、D【解析】【分析】根据等式的性质即可求出答案.【详解】解:A.a=b的两边都加5,可得a+5=b+5,原变形正确,故此选项不符合题意;B.a=b的两边都除以3,可得,原变形正确,故此选项不符合题意;C.的两边都乘6,可得,原变形正确,故此选项不符合题意;D.由|a|=|b|,可得a=b或a=−b,原变形错误,故此选项符合题意.故选:D.【点睛】本题考查等式的性质,解题的关键是熟练运用等式的性质.等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.4、B【解析】【分析】由关于x的一元一次方程,可得可求解再把方程的解代入方程求解从而可得答案.【详解】解:由关于x的一元一次方程可得:解得:所以方程为:,又因为方程的解是,所以解得:所以故选:B【点睛】本题考查的是一元一次方程的解,一元一次方程的定义,解一元一次方程,掌握“一元一次方程的定义与方程的解的含义”是解本题的关键.5、B【解析】【分析】设小明的这笔一年定期存款是x元,根据利息=本金×利率×期限,本息和=本金+利息,列方程即可.【详解】解:设她存入银行的本金为x元,则x+x•1.5%×2=61800.故选:B.【点睛】本题考查了利息问题,正确理解公式利息=本金×利率×期限是解题的关键.6、C【解析】略7、B【解析】【分析】根据题意得:BG∥AF,可得∠FAE=∠BED=50°,再根据折叠的性质,即可求解.【详解】解:如图,根据题意得:BG∥AF,∴∠FAE=∠BED=50°,∵AG为折痕,∴.故选:B【点睛】本题主要考查了图形的折叠,平行线的性质,熟练掌握两直线平行,同位角相等;图形折叠前后对应角相等是解题的关键.8、A【解析】【分析】由等式的基本性质可判断A,由可判断B,由多项式的项与次数的含义可判断C,由乘方运算的含义可判断D,从而可得答案.【详解】解:若,则,故A符合题意;若,则,故B不符合题意;是八次三项式,故C不符合题意;当时,,故D不符合题意;故选A【点睛】本题考查的是等式的基本性质,化简绝对值,多项式的项与次数,乘方运算的理解,掌握以上基础知识是解本题的关键.二、填空题1、或5【解析】【分析】根据题意可知,分两种情况:点B在原点左侧或右侧,然后即可列出相应的方程,从而可以求得经过几秒,OB=2OA.【详解】解:设经过t秒,OB=2OA,当点B在原点左侧时,3﹣5t=2(1+2t),解得t=,当点B在原点右侧时,5t﹣3=2(1+2t),解得t=5,由上可得,当经过或5秒时,OB=2OA.故答案为:或5【点睛】本题主要考查了数轴上两点间的距离,一元一次方程的应用,利用分类讨论思想解答是解题的关键.2、##【解析】【分析】根据追击问题得出等量关系:两人路程之差等于400米,列出方程解答即可.【详解】设分钟后两人第一次相遇,依题意有,解得:.故分钟后两人第一次相遇.故答案为:.【点睛】此题考查一元一次方程的应用,关键是找到等量关系并正确列出方程.3、【解析】【分析】“的”表示为,“的3倍”表示为,“不大于”即小于等于,进而得出不等式.【详解】解:的不大于的3倍,,故答案为:.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,正确理解题意是解题关键.4、63【解析】【分析】设每行5人的队列有a列,每行6人的队列有b列,班级共x人,列方程组,得到队列的人数是30的倍数,进而得到队列人数为60人,据此求出答案.【详解】解:设每行5人的队列有a列,每行6人的队列有b列,班级共x人,则,∴队列的人数是5的倍数,也是6的倍数,即30的倍数,∵班级的学生人数超过40人但又不多于80人,∴队列人数为60人,∴班级人数为x=60+3=63人,故答案为:63.【点睛】此题考查了三元一次方程组的应用,倍数的确定,正确理解题意得到队列人数为30的倍数是解题的关键.5、y=2x-3【解析】略6、x<﹣3【解析】【分析】根据求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)进行解答.【详解】解:根据“同小取小”,不等式组的解集是x<﹣3.故答案为:x<﹣3.【点睛】本题考查了一元一次不等式组的解集.解题的关键是掌握一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).7、一元一次不等式不等式的性质【解析】略三、解答题1、(1)2(2)【解析】【分析】(1)先去括号,再移项,合并同类项,最后把未知数的系数化“1”即可;(2)先去分母,再去括号,移项,合并同类项,最后把未知数的系数化“1”即可.(1)解:去括号得:移项,合并同类项得:解得:(2)解:去分母得:去括号得:移项合并同类项得:解得:【点睛】本题考查的是一元一次方程的解法,掌握“解一元一次方程的步骤”是解本题的关键.2、(1)90°;(2)150°;(3)当0°≤∠AON≤90°时,∠CON-∠AOM=30°,当90°<∠AON≤120°时∠AOM+∠CON=30°,当120°<∠AON≤180°时,∠AOM-∠CON=30°;(4)秒或秒.【解析】【分析】(1)根据,求出旋转角∠AON=90°即可;(2)根据,利用补角性质求出∠BOC=60°,根据ON所在的射线恰好平分,得出∠OCN=,再求出旋转角即可;(3)分三种情况当0°≤∠AON≤90°时,求出∠AOM=90°-∠AON,∠CON=120°-∠AON,两角作差;当90°<∠AON≤120°时,求两角之和;当120°<∠AON≤180°时,求出∠AOM=120°-∠MOC,∠CON=90°-∠MOC,再求两角之差即可(4)设三角板运动的时间为t秒,当ON平分∠AOC时,根据∠AOC的半角与旋转角相等,列方程,,当OM平分∠AOC时,根据∠AOC的半角+90°与旋转角相等,列方程,解方程即可.(1)解:∵ON在射线OA上,三角板绕点О按顺时针方向旋转,,∴旋转角∠AON=90°,∴三角板绕点О按顺时针方向旋转90°,故答案为:90°;(2)解:∵,∴∠BOC=180°-∠AOC=180°-120°=60°,∵ON所在的射线恰好平分,∴∠OCN=,∴旋转角∠AON=∠AOC+∠CON=120°+30°=150°,故答案为:150°;(3)当0°≤∠AON≤90°时∵∠AOM=90°-∠AON,∠CON=120°-∠AON,∴∠CON-∠AOM=120°-∠AON-(90°-∠AON)=30°,当90°<∠AON≤120°时∠AOM+∠CON=∠AOC-∠MON=120°-90°=30°,当120°<∠AON≤180°时∠AOM=120°-∠MOC,∠CON=90°-∠MOC,∴∠AOM-∠CON=30°,故答案为:当0°≤∠AON≤90°时,∠CON-∠AOM=30°,当90°<∠AON≤120°时∠AOM+∠CON=30°,当120°<∠AON≤180°时,∠AOM-∠CON=30°;(4)设三角板运动的时间为t秒,∠AOC=120+5t,OD平分∠AOC,∴∠AOD=,∠AON=20t,∴当ON平分∠AOC时,,解得:秒;当OM平分∠AOC时,,解得秒.∴三角板运动时间为秒或秒.故答案为秒或秒.【点睛】本题考查旋转性质,补角性质,角平分线定义,分类讨论思想的应用,图形中的角度计算,利用角平分线分得的角,和旋转角的关系列方程,掌握旋转性质,补角性质,角平分线定义,分类讨论思想的应用,图形中的角度计算,利用角平分线分得的角,和旋转角的关系列方程是解题关键.3、(1);(2)①,;②或或5.【解析】【分析】(1)设点C对应的数为c,先求出AC=c-(-1)=c+1,BC=8-c,根据,变形,即,解方程即可;(2)①点M、N在相遇前,先求出点M表示的数:-1+2t,点N表示的数为:8-t,根据,列方程,点M、N相遇后,求出点M过点C,点M表示的数为-1+2(t-2)=-5+2t,根据,列方程,解方程即可;②点P与点M相遇之前,MP小于2PN,点P与点M相遇后,点M未到点C,先求点P与点M首次相遇AM+CP=5,即2t+3t=5,解得t=1,确定点P与M,N位置,当时,列方程,当点P与点N相遇时,3(t-1)+t-1=7-1解得,此时点M在C位置,点N、P在8-t=8-2.5=5.5位置,点P掉头向C运动,点M在点C位置停止不等,根据当时,列方程5.5-3(t-2.5)-4=2{5.5-(t-2.5)-[5.5-3(t-2.5)]},点P与点M再次相遇时,解得,点N与点M相遇时,8-t=4,解得,当点P到点A之后,当时,列方程,解方程即可.(1)解:设点C对应的数为c,∴AC=c-(-1)=c+1,BC=8-c,∵,∴,即,解得;(2)解:①点M、N在相遇前,点M表示的数:-1+2t,点N表示的数为:8-t,∵,∴,解得,点M、N相遇后,点M过点C,点M表示的数为-1+2(t-2)=-5+2t,∵,∴,解得,∴MN=4时,或;②点P与点M相遇之前,MP小于2PN,点P与点M相遇后,点M未到点C,点P与点M首次相遇AM+CP=5,即2t+3t=5,解得t=1,点M与点P在1位置,点N在7位置,点P掉头,PM=3(t-1)-2(t-1),PN=8-t-1-3(t-1),当时,,解得,当点P与点N相遇时,3(t-1)+t-1=7-1,解得,此时点M在C位置,点N、P在8-t=8-2.5=5.5位置,点P掉头向C运动,点M在点C位置停止不等,当时,5.5-3(t-2.5)-4=2{5.5-(t-2.5)-[5.5-3(t-2.5)]},解得;点P与点M再次相遇时,,解得,点N与点M相遇时,8-t=4,解得,当点P到点A之后,当时,PM=2(t-2)-1-(-1)=2t-2,PN=8-t-(-1)=9-t,即,解得;综合得当时,的值为或或5.【点睛】本题考查数轴上动点问题,两点间的距离,列代数式,相遇与追及问题,列方程,分类考虑动点的位置,根据等量关系列方程是解题关键.4、(1)x=2;(2)x=-1【解析】【分析】(1)根据一元一次方程的解法解答即可;(2)根据一元一次方程的解法解答即可.(1)解:去括号,得:8-4x+12=6x,移项、合并同类项,得:-10x=-20,化系数为1,得:x=2;(2)解:去分母,得:3(2x+3)-(x-2)=6,去括号,得:6x+9-x+2=6,移项、合并同类项,得:5x=-5,化系数为1,得:x=-1;【点睛】本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤是解答的关键.5、30L垃圾桶的单价是20元,120L垃圾桶的单价是100元【解析】【分析】设垃圾桶的单价是元,垃圾桶的单价是元,等量关系为:买5个30L垃圾桶的钱+买9个120L垃圾桶的钱=1000;买10个30L垃圾桶的钱+买5个120L垃圾桶的钱=700;根据这两个等量关系列出方程组并解方程组即可.【详解】设垃圾桶的单价是元,垃圾桶的单价是元,依题意得:,解得:.即垃圾桶的单价是20元,垃圾桶的单价是100元.【点睛】本题考查了二元一次方程组的应用,关键是理解题意,找到等量关系并正确列出方程组.6、(1)2;(2)-7或-1或5;(3)t的值为或或6或10.【解析】【分析】(1)由“靠近距离”的定义,可得答案;(2)点P到线段AB的“靠近距离”为3时,有三种情况:①当点P在点A左侧时;②当点P在点A和点B之间时;③当点P在点B右侧时;(3)分四种情况进行讨论:①当点P在点A左侧,PA<PB;②当点P在点A右侧,PA<PB;③当点P在点B左侧,PB<PA;④当点P在点B右侧,PB<PA,根据点P到线段AB的“靠近距离”为2列出方程,解方程即可.(1)解:∵PA=-2-(-4)=2,PB=2-(-2)=4,PA<PB∴点P到线段AB的“靠近距离”为:2故答案为:2;(2)∵点A表示的数为-4,点B表示的数为2,∴点P到线段AB的“靠近距离”为3时,有三种情况:①当点P在点A左侧时,PA<PB,∵点A到线段AB的“靠近距离”为3,∴-4-m=3∴m=-7;②当点P在点A和点B之间时,∵PA=m+4,PB=2-m,如果m+4=3,那么m=-1,此时2-m=3,符合题意;∴m=-1;③当点P在点B右侧时,PB<PA,∵点P到线段AB的“靠近距离”为3,∴m-2=3,∴m=5,符合题意;综上,所求m的值为-7或-1或5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 食品配送行业市场需求分析
- 智慧城市建设对房地产市场的影响
- 消瘀药物临床应用现状-洞察及研究
- 浙江省名校协作体2026届高三上学期开学考试(一模)语文试卷(含答案)
- 山东省济南市2024-2025学年高一上学期期末学习质量检测历史试卷(含答案)
- 绿色工厂概念在皮革制品行业的应用研究-洞察及研究
- 第十三章 三角形 单元测试(含答案)2025-2026学年人教版数学八年级上册
- 装饰工程物联网技术-洞察及研究
- 避坑课件教学课件
- 服务质量多维度分析-洞察及研究
- 新疆交投面试题目及答案
- 卫生院卒中哨点建设汇报
- T/CAPE 12004-2022草酸二甲酯加氢制备乙二醇催化剂
- 低压电工安全培训
- DB44-T 2452-2023 高速公路服务设施建设规模设计规范
- 商业商场保洁合同协议
- 岩移观测施工方案
- 2025-2030中国汽车减震器市场战略规划及竞争力策略分析研究报告
- 2025济南市厂房租赁合同
- 矿山工程企业制定与实施新质生产力战略研究报告
- 麻精药品管理培训
评论
0/150
提交评论