版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省宁安市中考数学真题分类(勾股定理)汇编章节测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、在中,,,,的对边分别是a,b,c,若,,则的面积是(
)A. B. C. D.2、如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的点中任取一点C,使△ABC为直角三角形的概率是(
)A. B. C. D.3、我图古代数学著作《九章算术》中有这样一个问题:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深几何?(注:丈、尺是长度单位,1丈=10尺)意思为:如图,有一个边长为1丈的正方形水池,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的岸边,它的顶端恰好碰到池边的水面.则这根芦苇的长度是(
)A.5尺 B.10尺 C.12尺 D.13尺4、如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点,沿过点E的直线折叠,使点B与点A重合,折痕现交于点F,已知EF=,则BC的长是()A. B.3 C.3 D.35、如图,中,,一同学利用直尺和圆规完成如下操作:①以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于的长为半径画弧,两弧交点K,作射线CK;②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于N,分别以M、N为圆心,以大于的长为半径画弧,两弧交于点P,作直线BP交AC的延长线于点D,交射线CK于点E.请你观察图形,根据操作结果解答下列问题;过点D作交AB的延长线于点F,若,,则CE的长为(
)A.13 B. C. D.6、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F,若AC=3,AB=5,则CE的长为()A. B. C. D.7、有一个边长为1的正方形,以它的一条边为斜边,向外作一个直角三角形,再分别以直角三角形的两条直角边为边,向外各作一个正方形,称为第一次“生长”(如图1);再分别以这两个正方形的边为斜边,向外各自作一个直角三角形,然后分别以这两个直角三角形的直角边为边,向外各作一个正方形,称为第二次“生长”(如图2)……如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是(
)A.1 B.2020 C.2021 D.2022第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、如图,在四边形ABCD中,,,,,,那么四边形ABCD的面积是___________.2、如图,在长方形ABCD中,AB=8,AD=10,点E为BC上一点,将△ABE沿AE折叠,点B恰好落在线段DE上的点F处,则BE的长为______.3、《九章算术》中有一道“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B'(如图).则芦苇长_____尺.4、无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有__________cm.5、我国古代九章算术中有数学发展史上著名的“葭生池中”问题:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问:葭长几何?(1丈=10尺).意思是:有一个长方体池子,底面是边长为1丈的正方形,中间有芦苇,把高出水面1尺的芦苇拉向池边(芦苇没有折断),刚好贴在池边上,问:芦苇长多少尺?答:芦苇长____________尺.6、对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=3,BC=5,则____________.7、如图,已知中,,,动点M满足,将线段绕点C顺时针旋转得到线段,连接,则的最小值为_________.8、如图,某农舍的大门是一个木制的长方形栅栏,它的高为2m,宽为1.5m,现需要在相对的顶点间用一块木板加固,则木板的长为________.三、解答题(7小题,每小题10分,共计70分)1、已知:在中,点在直线上,点在同一条直线上,且,【问题初探】(1)如图1,若平分,求证:.请依据以下的简易思维框图,写出完整的证明过程.【变式再探】(2)如图2,若平分的外角,交的延长线于点,问:和的数量关系发生改变了吗?若改变,请写出正确的结论,并证明;若不改变,请说明理由.【拓展运用】(3)如图3,在的条件下.若,求的长度.2、如图,在4×4的正方形网格中,每个小正方形的边长均为1.(1)请在所给网格中画一个边长分别为,,的三角形;(2)此三角形的面积是.3、下图是某“飞越丛林”俱乐部新近打造的一款儿童游戏项目,工作人员告诉小敏,该项目AB段和BC段均由不锈钢管材打造,总长度为26米,长方形CDEF为一木质平台的主视图.小敏经过现场测量得知:CD=1米,AD=15米,于是小敏大胆猜想立柱AB段的长为10米,请判断小敏的猜想是否正确?如果正确,请写出理由,如果错误,请求出立柱AB段的正确长度.4、设直角三角形的两条直角边长及斜边上的高分别为a,b及h,求证:.5、如图所示,△ABC的两条高AD,BE相交于点F,AC=BC.(1)求证:△ADC≌△BEC.(2)若CD=1,BE=2,求线段AC的长.6、我国古代的数学名著《九章算术》中记载“今有竹高一丈八,末折抵地,去本6尺.问:折者高几何?”译文:一根竹子,原高一丈八,虫伤有病,一阵风将竹子折断,其竹梢恰好着地,着地处离原竹子根部6尺远.问:折处离地还有多高的竹子?(1丈=10尺)7、有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?-参考答案-一、单选题1、A【解析】【分析】根据题意可知,的面积为,结合已知条件,根据完全平方公式变形求值即可.【详解】解:中,,,,所对的边分别为a,b,c,,∵,,∴,,故A正确.故选:A.【考点】本题主要考查了勾股定理,完全平方公式变形求值,解题的关键是将完全平方公式变形求出ab的值.2、C【解析】【分析】找到可以组成直角三角形的点,根据概率公式解答即可.【详解】解:如图,,,,均可与点和组成直角三角形.,故选:C.【考点】本题考查了概率公式,解题的关键是掌握如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A).3、D【解析】【分析】依题意,芦苇的长度为直角三角形的斜边,水深为一直角边,另一直角边为5尺,由勾股定理即可列出方程,进而得到答案.【详解】解:设水深x尺,则芦苇的长度为(x+1)尺,依题意,由勾股定理,得:,解得,所以芦苇的长度为13尺.故选D.【考点】本题考查勾股定理的应用,将题目描述问题转化成直角三角形求边长的问题是解题的关键.4、B【解析】【分析】折叠的性质主要有:1.重叠部分全等;2.折痕是对称轴,对称点的连线被对称轴垂直平分.由折叠的性质可知,所以可求出∠AFB=90°,再直角三角形的性质可知,所以,的长可求,再利用勾股定理即可求出BC的长.【详解】解:AB=AC,,故选B.【考点】本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出∠AFB=90°是解题的关键.5、D【解析】【分析】先证明CE=CD=DF,BC=BF=5,利用勾股定理求出AB,设CE=CD=DF=x,在Rt△ADF中,利用勾股定理构建方程求解即可.【详解】解:由作图知CE⊥AB,BD平分∠CBF,∴∠1=∠2=∠3,∵∠CEB+∠3=∠2+∠CDE=90°,∴∠CEB=∠CDE,∴CD=CE,在△DBC和△DBF中,,∴△BDC≌△BDF(AAS),∴CD=DF,BC=BF=5,∵∠ACB=90°,AC=12,BC=5,∴AB=,设EC=CD=DF=x,在Rt△ADF中,则有(12+x)2=x2+182,∴x=,∴CE=,故选D.【考点】本题考查作图-复杂作图,全等三角形的判定和性质,等腰三角形的判定,以及勾股定理等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.6、A【解析】【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【详解】过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴,∵FC=FG,∴,解得:FC=,即CE的长为.故选A.【考点】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.7、D【解析】【分析】根据题意可得每“生长”一次,面积和增加1,据此即可求得“生长”了2021次后形成的图形中所有的正方形的面积和.【详解】解:如图,由题意得:SA=1,由勾股定理得:SB+SC=1,则“生长”了1次后形成的图形中所有的正方形的面积和为2,同理可得:“生长”了2次后形成的图形中所有的正方形面积和为3,“生长”了3次后形成的图形中所有正方形的面积和为4,……“生长”了2021次后形成的图形中所有的正方形的面积和是2022,故选:D【考点】本题考查了勾股数规律问题,找到规律是解题的关键.二、填空题1、+24【解析】【分析】连结BD,可求出BD=6,再根据勾股定理逆定理,得出△BDC是直角三角形,两个三角形面积相加即可.【详解】解:连结BD,∵,∴,∵,,∴BD=6,∵BD2=36,CD2=64,BC2=100,BD2+CD2=BC2,∴∠BDC=90°,S△ABD=,S△BDC=,四边形ABCD的面积是=S△ABD+S△BDC=+24故答案为:+24.【考点】本题考查勾股定理以及逆定理,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2、【解析】【分析】设,则,由折叠的性质可知,,在中利用勾股定理表示出,在中,利用勾股定理列方程求解.【详解】解:设,则,由折叠的性质可知,,,.在中,,.在中,,即,解得.的长为.【考点】本题考查了勾股定理的应用,折叠的性质,熟练掌握勾股定理是解题的关键.3、13【解析】【分析】将其转化为数学几何图形,如图所示,根据题意,可知B'C=5尺,设水深AC=x尺,则芦苇长(x+1)尺,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长和水深.【详解】解:设水深x尺,则芦苇长(x+1)尺,在Rt△CAB′中,AC2+B′C2=AB′2,即x2+52=(x+1)2,解得:x=12,∴x+1=13,故芦苇长13尺,故答案为:13【考点】本题考查勾股定理,和列方程解决实际问题,能够在实际问题中找到直角三角形并应用勾股定理是解决本题的关键.4、5【解析】【分析】根据题意直接利用勾股定理得出杯子内的筷子长度,进而得出答案.【详解】解:由题意可得:杯子内的筷子长度为:=15,则木筷露在杯子外面的部分至少有:20−15=5(cm).故答案为5.【考点】此题主要考查了勾股定理的应用,正确得出杯子内筷子的长是解决问题的关键.5、13【解析】【分析】设水深OB=x尺,则芦苇长OA'=(x+1)尺,根据勾股定理列方程求解即可.【详解】解:根据题意,设水深OB=x尺,则芦苇长OA'=(x+1)尺,根据题意列方程得:x2+52=(x+1)2,解得:x=12∴OA'=13尺.故答案为:13.【考点】此题考查了勾股定理的实际应用,解题的关键是根据题意设出未知数,根据勾股定理列方程求解.6、34【解析】【分析】在Rt△COB和Rt△AOB中,根据勾股定理得BO2+CO2=CB2,OD2+OA2=AD2,进一步得BO2+CO2+OD2+OA2=9+25,再根据AB2=BO2+AO2,CD2=OC2+OD2,最后求得AB2+CD2=34.【详解】解:∵BD⊥AC,∴∠COB=∠AOB=∠AOD=∠COD=90°,在Rt△COB和Rt△AOB中,根据勾股定理得,BO2+CO2=CB2,OD2+OA2=AD2,∴BO2+CO2+OD2+OA2=9+25,∵AB2=BO2+AO2,CD2=OC2+OD2,∴AB2+CD2=34;故答案为:34.【考点】本题考查勾股定理的应用,熟练掌握勾股定理在实际问题中的应用,从题中抽象出勾股定理这一数学模型是解题关键.7、##【解析】【分析】证明△AMC≌△BNC,可得,再根据三角形三边关系得出当点N落在线段AB上时,最小,求出最小值即可.【详解】解:∵线段绕点C顺时针旋转得到线段,∴,,∵,,∴,∴△AMC≌△BNC,∴,∵∴的最小值为;故答案为:.【考点】本题考查了全等三角形的判定与性质,勾股定理,解题关键是证明三角形全等,得出,根据三角形三边关系取得最小值.8、2.5m【解析】【详解】设木棒的长为xm,根据勾股定理可得:x2=22+1.52,解得x=2.5.故木棒的长为2.5m.故答案为2.5m.三、解答题1、(1)见解析
(2);理由见解析
(3)【解析】【分析】(1)根据ASA证明得BE=BC,得,进一步可得结论;(2)根据ASA证明得BE=BC,得;(3)连结,分别求出∠AEB=∠ADE=∠ACB=22.5°,再证明AE=CD,∠ADC=90°,由勾股定理可得AC,由EC=EA+AC可得结论.【详解】解:(1)证明平分,在和中,,;.理由:平分,在和中,,.连结,,,,且,由得,,,.【考点】此题主要考查了全等三角形的判定与性质,勾股定理等知识,连接AD是解答此题的关键.2、(1)画图见解析;(2)【解析】【分析】(1)利用勾股定理在网格中确定再顺次连接即可;(2)利用长方形的面积减去周围三个三角形的面积即可.【详解】解:(1)如图,即为所求作的三角形,其中:(2)故答案为:【考点】本题考查的是网格中作三角形,勾股定理的应用,网格三角形的面积的计算,掌握“利用勾股定理求解网格三角形的边长”是解本题的关键.3、小敏的猜想错误,立柱AB段的正确长度长为9米.【解析】【分析】延长FC交AB于点G,设BG=x米,在Rt△BGC中利用勾股定理可求x,进而可得AB的正确长度【详解】解:如图,延长FC交AB于点G则CG⊥AB,AG=CD=1米,GC=AD=15米设BG=x米,则BC=(26-1-x)米在Rt△BGC中,∵∴解得
∴BA=BG+GA=8+1=9(米)∴小敏的猜想错误,立柱AB段的正确长度长为9米.【考点】本题主要考查勾股定理的应用,解题的关键是作出辅助线,构造直角三角形4、见解析【解析】【分析】设斜边为c,根据勾股定理即可得出c=,再由三角形的面积
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 厂房代建代租合同范本
- 双人合作开店合同范本
- 动物苗种买卖合同范本
- 农村船舶出售合同范本
- 别墅公寓买卖合同范本
- 合伙经营药店合同范本
- 会议策划服务合同范本
- 厂房到期合同终止协议
- 别墅分租装修合同范本
- 2025年语文课标考试试题及答案
- HTTP协议课件教学课件
- 物业防寒防冻安全培训课件
- 2025道中华铸牢中华民族共同体意识知识竞赛试题(+答案)
- T-CCUA 048-2025 政务信息系统运行维护费用定额测算方法
- 产教融合机制课题申报书
- 建筑工地环保及噪音控制施工方案
- 2024年下半年 软件设计师 上午试卷
- 2025新外研社版七年级上英语单词汉译英默写表(开学版)
- 消化内科出科题目及答案
- 第7章广泛应用的酸碱盐(上)-2021学年九年级化学下册必背知识手册(沪教版)(默写卡)
- 2025年铅酸蓄电池行业研究报告及未来发展趋势预测
评论
0/150
提交评论