基础强化沪科版9年级下册期末试卷及完整答案详解(全优)_第1页
基础强化沪科版9年级下册期末试卷及完整答案详解(全优)_第2页
基础强化沪科版9年级下册期末试卷及完整答案详解(全优)_第3页
基础强化沪科版9年级下册期末试卷及完整答案详解(全优)_第4页
基础强化沪科版9年级下册期末试卷及完整答案详解(全优)_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

沪科版9年级下册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、下列说法正确的是()A.掷一枚质地均匀的骰子,掷得的点数为3的概率是.B.若AC、BD为菱形ABCD的对角线,则的概率为1.C.概率很小的事件不可能发生.D.通过少量重复试验,可以用频率估计概率.2、如图,与相切于点,连接交于点,点为优弧上一点,连接,,若,的半径,则的长为()A.4 B. C. D.13、把7个同样大小的正方体形状的积木堆放在桌子上,从正面和左面看到的形状图都是如图所示的同样的图形,则其从上面看到的形状图不可能是()A. B. C. D.4、如图,该几何体的左视图是()A. B. C. D.5、如图,从⊙O外一点P引圆的两条切线PA,PB,切点分别是A,B,若∠APB=60°,PA=5,则弦AB的长是()A. B. C.5 D.56、等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是()A.2个 B.3个 C.4个 D.5个7、在一个不透明的盒子中装有红球、白球、黑球共40个,这些球除颜色外无其他差别,在看不见球的条件下,随机从盒子中摸出一个球记录颜色后放回.经过多次试验,发现摸到红球的频率稳定在30%左右,则盒子中红球的个数约为()A.12 B.15 C.18 D.238、在一个不透明的盒子中装有12个白球,4个黄球,这些球除颜色外都相同.若从中随机摸出一个球,则摸出的一个球是黄球的概率为()A. B. C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,AB是半圆O的弦,DE是直径,过点B的切线BC与⊙O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则∠BDC的度数为______.2、如图,在ABC中,∠C=90°,AB=10,在同一平面内,点O到点A,B,C的距离均等于a(a为常数).那么常数a的值等于________.3、圆锥的底面直径是80cm,母线长90cm.它的侧面展开图的圆心角和圆锥的全面积依次是______.4、如图,已知⊙O的半径为2,弦AB的长度为2,点C是⊙O上一动点若△ABC为等腰三角形,则BC2为_______.5、某农科所为了深入践行“绿水青山就是金山银山”的理念,大力开展对植物生长的研究,该农科所在相同条件下做某植物种子发芽率的试验,得到的结果如下表所示:种子个数1002003004005006007008009001000…发芽种子个数94188281349435531625719812902…发芽种子频率(结果保留两位小数)0.940.940.940.870.870.890.890.900.900.90…根据频率的稳定性,估计这种植物种子不发芽的概率是______.6、如图,AB为⊙O的弦,∠AOB=90°,AB=a,则OA=______,O点到AB的距离=______.7、已知如图,AB=8,AC=4,∠BAC=60°,BC所在圆的圆心是点O,∠BOC=60°,分别在、线段AB和AC上选取点P、E、F,则PE+EF+FP的最小值为____________.三、解答题(7小题,每小题0分,共计0分)1、如图,内接于,BC是的直径,D是AC延长线上一点.(1)请用尺规完成基本作图:作出的角平分线交于点P.(保留作图痕迹,不写作法)(2)在(1)所作的图形中,过点P作,垂足为E.则PE与有怎样的位置关系?请说明理由.2、如图,是由一些大小相同的小正方体组合成的简单几同体,请在下面方格纸中分别画出从它的左面和上面看到的形状图.3、在平面直角坐标系中,⊙O的半径为1,对于直线l和线段AB,给出如下定义:若将线段AB关于直线l对称,可以得到⊙O的弦A´B´(A´,B´分别为A,B的对应点),则称线段AB是⊙O的关于直线l对称的“关联线段”.例如:在图1中,线段是⊙O的关于直线l对称的“关联线段”.(1)如图2,的横、纵坐标都是整数.①在线段中,⊙O的关于直线y=x+2对称的“关联线段”是_______;②若线段中,存在⊙O的关于直线y=-x+m对称的“关联线段”,则=;(2)已知直线交x轴于点C,在△ABC中,AC=3,AB=1,若线段AB是⊙O的关于直线对称的“关联线段”,直接写出b的最大值和最小值,以及相应的BC长.4、在中,,,过点A作BC的垂线AD,垂足为D,E为线段DC上一动点(不与点C重合),连接AE,以点A为中心,将线段AE逆时针旋转90°得到线段AF,连接BF,与直线AD交于点G.(1)如图,当点E在线段CD上时,①依题意补全图形,并直接写出BC与CF的位置关系;②求证:点G为BF的中点.(2)直接写出AE,BE,AG之间的数量关系.5、如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(与A、B不重合),连接CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连接DE、BE(1)求证:△ACD≌△BCE;(2)若BE=5,DE=13,求AB的长6、如图,在直角坐标系中,将△ABC绕点A顺时针旋转90°.(1)画出旋转后的△AB1C1,并写出B1、C1的坐标;(2)求线段AB在旋转过程中扫过的面积.7、如图,在⊙O中,点E是弦CD的中点,过点O,E作直径AB(AE>BE),连接BD,过点C作CFBD交AB于点G,交⊙O于点F,连接AF.求证:AG=AF.-参考答案-一、单选题1、B【分析】概率是指事情发生的可能性,等可能发生的事件的概率相同,小概率事件是指发生的概率比较小,不代表不会发生,通过大量重复试验才能用频率估计概率,利用这些对四个选项一次判断即可.【详解】A项:掷一枚质地均匀的骰子,每个面朝上的概率都是一样的都是,故A错误,不符合题意;B项:若AC、BD为菱形ABCD的对角线,由菱形的性质:对角线相互垂直平分得知两条线段一定垂直,则AC⊥BD的概率为1是正确的,故B正确,符合题意;C项:概率很小的事件只是发生的概率很小,不代表不会发生,故C错误,不符合题意;D项:通过大量重复试验才能用频率估计概率,故D错误,不符合题意.故选B【点睛】本题考查概率的命题真假,准确理解事务发生的概率是本题关键.2、B【分析】连接OB,根据切线性质得∠ABO=90°,再根据圆周角定理求得∠AOB=60°,进而求得∠A=30°,然后根据含30°角的直角三角形的性质解答即可.【详解】解:连接OB,∵AB与相切于点B,∴∠ABO=90°,∵∠BDC=30°,∴∠AOB=2∠BDC=60°,在Rt△ABO中,∠A=90°-60°=30°,OB=OC=2,∴OA=2OB=4,∴,故选:B.【点睛】本题考查切线的性质、圆周角定理、直角三角形的锐角互余、含30°角的直角三角形性质、勾股定理,熟练掌握相关知识的联系与运用是解答的关键.3、C【分析】利用俯视图,写出符合题意的小正方体的个数,即可判断.【详解】A、当7个小正方体如图分布时,符合题意,本选项不符合题意.B、当7个小正方体如图分布时,符合题意,本选项不符合题意.C、没有符合题意的几何图形,本选项符合题意.D、当7个小正方体如图分布时,符合题意,本选项不符合题意.故选:C.【点睛】此题考查了从不同的方向观察物体和几何体,锻炼了学生的空间想象力和抽象思维能力.4、C【分析】根据从左边看得到的图形是左视图解答即可.【详解】解:从左边看是一个正方形被水平的分成3部分,中间的两条分线是虚线,故C正确.故选C.【点睛】本题主要考查了简单组合体的三视图,掌握三视图的定义成为解答本题的关键.5、C【分析】先利用切线长定理得到PA=PB,再利用∠APB=60°可判断△APB为等边三角形,然后根据等边三角形的性质求解.【详解】解:∵PA,PB为⊙O的切线,∴PA=PB,∵∠APB=60°,∴△APB为等边三角形,∴AB=PA=5.故选:C.【点睛】本题考查了切线长定理以及等边三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.6、A【分析】根据轴对称图形与中心对称图形的概念进行判断.【详解】解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;共2个既是轴对称图形又是中心对称图形.故选:A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.(1)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.(2)如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.7、A【分析】由题意可设盒子中红球的个数x,则盒子中球的总个数x,摸到红球的频率稳定在30%左右,根据频率与概率的关系可得出摸到红球的概率为30%,再根据概率的计算公式计算即可.【详解】解:设盒子中红球的个数x,根据题意,得:解得x=12,所以盒子中红球的个数是12,故选:A.【点睛】本题主要考查了利用频率估计概率以及概率求法的运用,利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=;频率与概率的关系生:一般地,在大量的重复试验中,随着试验次数的增加,事件A发生的频率会稳定于某个常数p,我们称事件A发生的概率为p.8、C【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:一个不透明的盒子中装有12个白球,4个黄球,从中随机摸出一个球,所有等可能的情况16种,其中摸出的一个球是黄球的情况有4种,∴随机抽取一个球是黄球的概率是.故选C.【点睛】本题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所有符合条件的情况数是解决本题的关键.二、填空题1、【分析】先由切线的性质得到∠OBC=90°,再由平行四边形的性质得到BO=BC,则∠BOC=∠BCO=45°,由OD=OB,得到∠ODB=∠OBD,由∠ODB+∠OBD=∠BOC,即可得到∠ODB=∠OBD=22.5°,即∠BDC=22.5°.【详解】解:∵BC是圆O的切线,∴∠OBC=90°,∵四边形ABCO是平行四边形,∴AO=BC,又∵AO=BO,∴BO=BC,∴∠BOC=∠BCO=45°,∵OD=OB,∴∠ODB=∠OBD,∵∠ODB+∠OBD=∠BOC,∴∠ODB=∠OBD=22.5°,即∠BDC=22.5°,故答案为:22.5°.【点睛】本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键.2、5【分析】直接利用直角三角形斜边上的中线等于斜边的一半即可求解.【详解】解:根据直角三角形斜边上的中线等于斜边的一半,即可知道点到点A,B,C的距离相等,如下图:,,故答案是:5.【点睛】本题考查了直角三角形的外接圆的外心,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半即可求解.3、160°,5200【分析】由题意知,圆锥的展开图扇形的r半径为90cm,弧长l为.代入扇形弧长公式求解圆心角;代入扇形面积公式求出圆锥侧面积,然后加上底面面积即可求出全面积.【详解】解:圆锥的展开图扇形的r半径为90cm,弧长l为∵∴解得∵∴故答案为:160°,.【点睛】本题考查了扇形的圆心角与面积.解题的关键在于运用扇形的弧长与面积公式进行求解.难点在于求出公式中的未知量.4、4或12或【分析】分三种情况讨论:当AB=BC时、当AB=AC时、当AC=BC时,根据垂径定理和勾股定理即可求解.【详解】解:如图1,当AB=BC时,BC=2,故BC2=4;如图2,当AB=AC=2时,过A作AD⊥BC于D,连接OC,∴BD=CD,设OD=x,则在Rt△ACD中,AC2=CD2+AD2,在Rt△OCD中,OC2=CD2+OD2,∴CD2=AC2-AD2=OC2-OD2即22-(2-x)2=22-x2解得x=1∴CD=∴BC=2∴BC2=12;如图3,当AC=BC时,则C在AB的垂直平分线上,∴CD经过圆心O,AD=BD==1,∵OA=2,∴OD=,∴CD=CO+OD=2+,CD=C'O-OD=2-,∴BC2=CD2+BD2=(2+)2+12=,BC2=CD2+BD2=(2-)2+12=,综上,BC2为4或12或故答案为:4或12或.【点睛】本题考查了垂径定理,等腰三角形的性质,勾股定理的应用,熟练掌握性质定理是解题的关键.5、0.1【分析】大量重复试验下“发芽种子”的频率可以估计“发芽种子”的概率,据此求解.【详解】观察表格发现随着实验次数的增多频率逐渐稳定在0.9附近,故“发芽种子”的概率估计值为0.9.∴这种植物种子不发芽的概率是0.1.故答案为:0.1.【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.6、【分析】过O作OC垂直于弦AB,利用垂径定理得到C为AB的中点,然后由OA=OB,且∠AOB为直角,得到三角形OAB为等腰直角三角形,由斜边AB的长,利用勾股定理求出直角边OA的长即可;再由C为AB的中点,由AB的长求出AC的长,在直角三角形OAC中,由OA及AC的长,利用勾股定理即可求出OC的长,即为O点到AB的距离.【详解】解:过O作OC⊥AB,则有C为AB的中点,∵OA=OB,∠AOB=90°,AB=a,∴根据勾股定理得:OA2+OB2=AB,∴OA=,在Rt△AOC中,OA=,AC=AB=,根据勾股定理得:OC==.故答案为:;【点睛】此题考查了垂径定理,等腰直角三角形的性质,以及勾股定理,在圆中遇到弦,常常过圆心作弦的垂线,根据近垂径定理由垂直得中点,进而由弦长的一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题.7、12【分析】如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时△PEF的周长=PE+PF+EF=EM+EF+FM=MN,想办法求出MN的最小值即可解决问题.【详解】解:如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时△PEF的周长=PE+PF+EF=EM+EF+FM=MN,∴当MN的值最小时,△PEF的值最小,∵AP=AM=AN,∠BAM=∠BAP,∠CAP=∠CAN,∠BAC=60°,∴∠MAN=120°,∴MN=AM=PA,∴当PA的值最小时,MN的值最小,取AB的中点J,连接CJ.∵AB=8,AC=4,∴AJ=JB=AC=4,∵∠JAC=60°,∴△JAC是等边三角形,∴JC=JA=JB,∴∠ACB=90°,∴BC=,∵∠BOC=60°,OB=OC,∴△OBC是等边三角形,∴OB=OC=BC=4,∠BCO=60°,∴∠ACH=30°,∵AH⊥OH,AH=AC=2,CH=AH=2,∴OH=6,∴OA==4,∵当点P在直线OA上时,PA的值最小,最小值为-,∴MN的最小值为•(-)=-12.故答案:-12.【点睛】本题考查了圆周角定理,垂径定理,轴对称-最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考填空题中的压轴题.三、解答题1、(1)作图见解析(2)是的切线,理由见解析【分析】(1)如图1所示,以点为圆心,大于为半径画弧,交于点,交于点;分别以点为圆心,大于的长度为半径画弧,交点为,连接即为角平分线,与的交点即为点.(2)如图2所示,连接,由题意可知,,,,;在四边形中,,,求出,得出,由于是半径,故有是的切线.(1)解:如图1所示(2)解:是的切线.如图2所示,连接由题意可知,,,,在四边形中∵∴∴又∵是半径∴是的切线【点睛】本题考查了角平分线的画法与性质,切线的判定,圆周角等知识点.解题的关键在于将知识综合灵活运用.2、图见解析.【分析】根据左视图和俯视图的画法即可得.【详解】解:画图如下:【点睛】本题考查了左视图和俯视图,熟练掌握左视图(是指从左面观察物体所得到的图形)和俯视图(是指从上面观察物体所得到的图形)的画法是解题关键.3、(1)①A1B1;②2或3;(2)b的最大值为,此时BC=;b的最小值为,此时BC=【分析】(1)①根据题意作出图象即可解答;②根据“关联线段”的定义,可确定线段A2B2存在“关联线段”,再分情况解答即可;(2)设与AB对应的“关联线段”是A’B’,由题意可知:当点A’(1,0)时,b最大,当点A’(-1,0)时,b最小;然后分别画出图形求解即可;【详解】解:(1)①作出各点关于直线y=x+2的对称点,如图所示,只有A1B1符合题意;故答案为:A1B1;②由于直线A1B1与直线y=-x+m垂直,故A1B1不是⊙O的关于直线y=-x+m对称的“关联线段”;由于线段A3B3=,而圆O的最大弦长直径=2,故A3B3也不是⊙O的关于直线y=-x+m对称的“关联线段”;直线A2B2的解析式是y=-x+5,且,故A2B2是⊙O的关于直线y=x+2对称的“关联线段”;当A2B2是⊙O的关于直线y=-x+m对称的“关联线段”,且对应两个端点分别是(0,1)与(1,0)时,m=3,当A2B2是⊙O的关于直线y=-x+m对称的“关联线段”,且对应两个端点分别是(0,-1)与(-1,0)时,m=2,故答案为:2或3.(2)设与AB对应的“关联线段”是A’B’,由题意可知:当点A’(1,0)时,b最大,当点A’(-1,0)时,b最小;当点A’(1,0)时,如图,连接OB’,CB’,作B’M⊥x轴于点M,∴CA’=CA=3,∴点C坐标为(4,0),代入直线,得b=;∵A’B’=OA’=OB’=1,∴△OA’B’是等边三角形,∴OM=,,在直角三角形CB’M中,CB'=,即;当点A’(-1,0)时,如图,连接OB’,CB’,作B’M⊥x轴于点M,∴CA’=CA=3,∴点C坐标为(2,0),代入直线,得b=;∵A’B’=OA’=OB’=1,∴△OA’B’是等边三角形,∴OM=,,在直角三角形CB’M中,CB'=;即综上,b的最大值为,此时BC=;b的最小值为,此时BC=.【点睛】本题是新定义综合题,主要考查了一次函数图象上点的坐标特点、圆的有关知识、等边三角形的判定和性质、勾股定理、轴对称的性质等知识,正确理解新定义的含义、灵活应用数形结合思想是解题的关键.4、(1)①BC⊥CF;证明见详解;②见详解;(2)2AE2=4AG2+BE2.证明见详解.【分析】(1)①如图所示,BC⊥CF.根据将线段AE逆时针旋转90°得到线段AF,得出AE=AF,∠EAF=90°,可证△BAE≌△CAF(SAS),得出∠ABE=∠ACF=45°,可得∠ECF=∠ACB+∠ACF=45°+45°=90°即可;②根据AD⊥BC,BC⊥CF.可得AD∥CF,可证△BDG∽△BCF,可得,得出即可;(2)2AE2=4AG2+BE2,延长BA交CF延长线于H,根据等腰三角形性质可得AD平分∠BAC,可得∠BAD=∠CAD=,可证△BAG∽△BHF,得出HF=2AG,再证△AEC≌△AFH(AAS),得出EC=FH=2AG,利用勾股定理得出,即即可.【详解】解:(1)①如图所示,BC⊥CF.∵将线段AE逆时针旋转90°得到线段AF,∴AE=AF,∠EAF=90°,∴∠EAC+∠CAF=90°,∵,,∴∠BAE+∠EAC=90°,∠ABC=∠ACB=45°,∴∠BAE=∠CAF,在△BAE和△CAF中,,∴△BAE≌△CAF(SAS),∴∠ABE=∠ACF=45°,∴∠ECF=∠ACB+∠ACF=45°+45°=90°,∴BC⊥CF;②∵AD⊥BC,BC⊥CF.∴AD∥CF,∴∠BDG=∠BCF=90°,∠BGD=∠BFC,∴△BDG∽△BCF,∴,∵,AD⊥BC,∴BD=DC=,∴,∴,∴,∴BG=GF;(2)2AE2=4AG2+BE2.延长BA交CF延长线于H,∵AD⊥BC,AB=AC,∴AD平分∠BAC,∴∠BAD=∠CAD=,∵BG=GF,AG∥HF,∴∠BAG=∠H=45°,∠AGB=∠HFB,∴△BAG∽△BHF,∴,∴HF=2AG,∵∠ACE=45°,∴∠ACE=∠H,∵∠EAC+∠CAF=90°,∠CAF+∠FAH=90°,∴∠EAC=∠FAH,在△AEC和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论