




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
冀教版7年级下册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、下列说法中,错误的是()A.两点之间线段最短B.若AC=BC,则点C是线段AB的中点C.过直线外一点有且只有一条直线与已知直线平行D.平面内过直线外一点有且只有一条直线与已知直线垂直2、下列等式中,从左到右的变形是因式分解的是()A. B.C. D.3、我国自主研发的“复兴号”CR300AF型动车于12月21日在贵阳动车所内运行,其最高运行速度为250000m/h,其中数据250000用科学记数法表示为()A.25×104 B.2.5×104 C.2.5×105 D.2.5×1064、已知实数x,y满足:x2−+2=0,y2−+2=0,则2022|x−y|的值为()A. B.1 C.2022 D.5、下列因式分解正确的是()A.2ab2﹣4ab=2a(b2﹣2b) B.a2+b2=(a+b)(a﹣b)C.x2+2xy﹣4y2=(x﹣y)2 D.﹣my2+4my﹣4m=﹣m(2﹣y)26、下列多项式不能用公式法因式分解的是()A.a2+4a+4 B.a2﹣a+1 C.﹣a2﹣9 D.a2﹣17、下列计算中,正确的是()A. B.C. D.8、第七次人口普查显示,天津市常住人口约为13860000人,将该数据用科学记数法表示是()A.0.1386×108 B.1.386×108 C.1.386×107 D.13.86×107第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、幻方,又称为九宫格,最早起源于中国,是一种中国传统游戏.如图1,它是在的9个格子中填入9个数,使得每行、每列及对角线上的3个数之和都相等.在如图2所示幻方中,只填了5个用字母表示的数,根据每行、每列及对角线上的3个数之和都相等,则右上角“x”所表示的数应等于_______.2、全球棉花看中国,中国棉花看新疆.新疆长绒棉是世界顶级棉花,品质优,产量大,常年供不应求.某超市为了支持新疆棉花,在“五一节”进行促销活动,将新疆棉制成的A、B、C三种品牌毛巾混装成甲、乙、丙三种礼包销售,其中甲礼包包含1条A品牌毛巾、2条B品牌毛巾:乙礼包包含2条A品牌毛巾,2条B品牌毛巾,3条C品牌毛巾:丙礼包包含2条A品牌毛巾,4条C品牌毛巾,每个礼包的售价等于礼包内各条毛巾售价之和,5月1日当天,超市对A、B、C三个品牌毛巾的售价分别打8折、7折、5折销售,5月2日恢复原价,小明发现5月1日一个甲礼包的售价等于5月2日﹣个乙礼包售价的40%,5月1日一个乙礼包的售价比5月2日一个丙礼包售价少1.2元,若A、B、C三个品牌的毛巾的原价都是正整数,且B品牌毛巾的原价不超过15元,则小明在5月1日购买的一个甲礼包和一个乙礼包,应该付_____元.3、阅读理解:①根据幂的意义,表示个相乘;则;②,知道和可以求,我们不妨思考;如果知道,,能否求呢?对于,规定,,例如:,所以,.记,,,;与之间的关系式为__.4、用科学记数法表示数0.000678是_______.5、母亲节来临之际,某花店购进大量的康乃馨、百合、玫瑰,打算采用三种不同方式搭配成花束,分别是“心之眷恋”、“佳人如兰”、“守候”,三种花束的数量之比为2:3:5,每束花束的总成本为组成花束的康乃馨、百合、玫瑰成本之和(包装成本忽略不计).“心之眷恋”花束包含康乃馨6支、百合1支、玫瑰3支,“佳人如兰”花束包含康乃馨2支、百合2支、玫瑰6支.每束“心之眷恋”的成本是每支康乃馨成本的15倍,销售的利润率是60%;每束“佳人如兰”的售价是成本的倍:每束“守候”在成本的基础上提价70%标价后打9折出售,获利为每支康乃馨成本的5.3倍.为了促进这三种花束的销售,商家在每束花束中分别赠送一支康乃馨作为礼物,销售结束时,这些花束全部卖完,则商家获得的总利润率为___.6、若a,b都是有理数,且满足a2+b2+5=4a﹣2b,则(a+b)2021=_____.7、第七次全国人口普查结果公布,宜春市常住人口总数大约为501万人,把数字501万用科学记数法表示为______三、解答题(7小题,每小题10分,共计70分)1、(1)已知:x+2y+1=3,求3x×9y×3的值;(2)下边是小聪计算(3a﹣b)(3a+b)﹣a(4a﹣1)的解题过程.请你判断是否正确?若有错误,请写出正确的解题过程.(3a﹣b)(3a+b)﹣a(4a﹣1)=3a2﹣b2﹣4a2﹣a=﹣a2﹣b2﹣a.2、已知,如图1,直线,E为直线上方一点,连接,与交于P点.(1)若,则_________(2)如图1所示,作的平分线交于点F,点M为上一点,的平分线交于点H,过点H作交的延长线于点G,,且,求的度数.(3)如图2,在(2)的条件下,,将绕点F顺时针旋转,速度为每秒钟,记旋转中的为,同时绕着点D顺时针旋转,速度为每秒钟,记旋转中的为,当旋转一周时,整个运动停止.设运动时间为t(秒),则当其中一条边与的边DF′互相垂直时,直接写出t的值.3、根据不等式的性质,将下列不等式化成“x>a”或“x<a”的形式.(1)-x>-1;(2)x>x﹣6.4、一副直角三角板按如图1所示的方式放置在直线l上,已知AB=160,BC=80,点P以每秒2个单位长度的速度沿A→B→C的路线运动;同时,三角板ADE(含45°)绕点A顺时针旋转,速度为每秒3°,当点P运动至点C时,全部停止运动,设运动时间为t秒.图2是运动过程中某时刻的图形.(1)当点P到达点B时,△ADE转动了°.(2)当0<t<60时,若∠FAE与∠B互为余角,则t=.(3)在运动过程中,当t=时,使得AE、AD、AB三条射线中,其中一条是另外两条射线夹角(小于180°)的角平分线.(4)当△ACP的面积大于△ABC面积的一半,且△ADE的边所在直线与直线AB的夹角为90度时,直接写出:所有满足条件的t的取值之和为
.5、例如:若a+b=3,ab=1,求a2+b2的值.解:因为a+b=3,所以(a+b)2=9,即:a2+2ab+b2=9,又因为ab=1,所以a2+b2=7.根据上面的解题思路与方法,解决下列问题:(1)若x+y=8,x2+y2=40,求xy的值;(2)填空:若(4﹣x)x=5,则(4﹣x)2+x2=;(3)如图所示,已知正方形ABCD的边长为x,E,F分别是AD、DC上的点,CF=2,长方形EMFD的面积是12,则x的值为.6、如图,正方形网格中点A,B,C为三个格点(网格线的交点即为格点).(1)根据以下要求画图①画直线AB,画射线AC;②在图中确定一个格点D,画直线CD,使得直线CD⊥AC,交AB于点E;③过点B画直线交线CD于点F;(2)在第(1)小题中,与∠BAC相等的角有个.7、问题提出:计算:1+3+3(1+3)+3(1+3)2+3(1+3)3+3(1+3)4+3(1+3)5+3(1+3)6问题探究:为便于研究发现规律,我们可以将问题“一般化”,即将算式中特殊的数字3用具有一般性的字母a代替,原算式化为:1+a+a(1+a)+a(1+a)2+a(1+a)3+a(1+a)4+a(1+a)5+a(1+a)6然后我们再从最简单的情形入手,从中发现规律,找到解决问题的方法:(1)仿照②,写出将1+a+a(1+a)+a(1+a)2+a(1+a)3进行因式分解的过程;(2)填空:1+a+a(1+a)+a(1+a)2+a(1+a)3+a(1+a)4=;发现规律:1+a+a(1+a)+a(1+a)2+…+a(1+a)n=;问题解决:计算:1+3+3(1+3)+3(1+3)2+3(1+3)3+3(1+3)4+3(1+3)5+3(1+3)6=(结果用乘方表示).-参考答案-一、单选题1、B【解析】【分析】根据线段公理可判断A,根据点C与线段AB的位置关系可判断B,根据平行公理可判断C,根据垂线公理可判断D即可.【详解】A.两点之间线段最短,正确,故选项A不合题意;B.若AC=BC,点C在线段AB外和线段AB上两种情况,当点C在线段AB上时,则点C是线段AB的中点,当点C不在线段AB上,则点C不是线段AB中点,不正确,故选项B符合题意;C.过直线外一点有且只有一条直线与已知直线平行,正确,故选项C不合题意;D.平面内过直线外一点有且只有一条直线与已知直线垂直,正确,故选项D不合题意.故选B.【点睛】本题考查基本事实即公理,和线段的中点,掌握基本事实即公理,和线段的中点是解题关键.2、C【解析】【分析】根据因式分解定义解答.【详解】解:A.是整式乘法,故该项不符合题意;B.是整式乘法,故该项不符合题意;C.是因式分解,故该项符合题意;D.不是整式乘法也不是因式分解,故该项不符合题意;故选:C.【点睛】此题考查了因式分解的定义:将一个多项式分解为几个整式的积的形式,叫将多项式分解因式,熟记定义是解题的关键.3、C【解析】【分析】用科学记数法表示绝对值大于1的数形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:250000=2.5×105,故选:C.【点睛】本题考查科学记数法的表示方法.用科学记数法表示绝对值大于1的数的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4、B【解析】【分析】利用偶次方的非负性得到x>0,y>0,两式相减,可求得x-y=0,据此即可求解.【详解】解:∵x2−+2=0①,y2−+2=0②,∴x2+2=,y2+2=,∵x2+20,y2+20,∴x>0,y>0,①-②得:x2−-y2+=0,整理得:(x-y)(x+y+)=0,∵x>0,y>0,∴x+y+>0,∴x-y=0,∴2022|x−y|=20220=1,故选:B.【点睛】本题考查了因式分解的应用,非负性的应用,由偶次方的非负性得到x>0,y>0是解题的关键.5、D【解析】【分析】将各式计算得到结果,即可作出判断.【详解】解:A.2ab2﹣4ab=2ab(b﹣2),分解不完整,故错误;B.a2+b2不能分解因式,而(a+b)(a﹣b)=a2−b2,故错误;C.x2+2xy﹣4y2不能分解因式,而(x−y)2=x2−2xy+y2,故错误;D.﹣my2+4my﹣4m=﹣m(2﹣y)2,故正确.故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.6、C【解析】【分析】直接利用完全平方公式以及平方差公式分别分解因式,进而得出答案.【详解】解:A中,故此选项不合题意;B中,故此选项不合题意;C中无法分解因式,故此选项符合题意;D中,故此选项不合题意;故选:C.【点睛】本题考查了利用乘法公式进行因式分解.解题的关键在于对完全平方公式和平方差公式的灵活运用.7、B【解析】【分析】根据零指数幂,负指数幂的运算法则计算各个选项后判断.【详解】解:A.,故选项A计算错误,不符合题意;B.,故选项B计算正确,符合题意;C.,原式不存在,故不符合题意;D.,故选项D计算错误,不符合题意;故选:B【点睛】本题主要考查了零指数幂,负指数幂运算.负指数为正指数的倒数;任何非0数的0次幂等于1.8、C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:13860000=1.386×107,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题1、3【解析】【分析】根据题意先求出对角线上数字的和,然后再构建一元一次方程进行求解;【详解】解:设x左边的两个数为y和z,根据题意得:n-a+z=n+m+x①,a+6+m+y=n+m+x②,x+y+z=n+m+x③,①+②得:n+6+m+(y+z)=2m+2n+2x;由③得:y+z=n+m解得:x=3故答案为:3【点睛】本题考查三元一次方程的应用,如果能看透题目,充分利用已知,那么解决问题的难度将大大降低.2、42.8【解析】【分析】根据题意可设A品牌毛巾原售价为x元,B品牌毛巾原售价为y元,C品牌毛巾原售价为z元,同时可得出5月1日各品牌毛巾打折后的价格,根据题意,可列出关于x,y,z的两个三元一次方程,经过化简,可得到三者之间的关系,然后利用B品牌毛巾售价不超过15元,且各毛巾是价格均为整数,可得三种品牌毛巾的价格,代入5月1日打折后的礼包价格求解即可.【详解】设A品牌毛巾原售价为x元,B品牌毛巾原售价为y元,C品牌毛巾原售价为z元,则5月1日,A品牌毛巾售价为0.8x元,B品牌毛巾售价为0.7y元,C品牌毛巾原售价为0.5z元.则5月1日打折后礼包售价分别为:甲礼包:(0.8x+1.4y)元;乙礼包:(1.6x+1.4y+1.5z)元;丙礼包:(1.6x+2z)元;5月2日礼包恢复原价后售价分别为:甲礼包:(x+2y)元;乙礼包:(2x+2y+3z)元;丙礼包:(2x+4z)元;根据题意可得:,解得,∵B品牌毛巾售价不超过15元,且各毛巾是价格均为整数,∴0<y≤15,∴0<2z≤15,,∵为正整数∴z只能取4,∴,则5月1日购买甲、乙礼包花费为:0.8x+1.4y+1.6x+1.4y+1.5z=2.4x+2.8y+1.5z,代入可得:2.4×6+2.8×8+1.5×4=42.8(元),故答案为:42.8.【点睛】本题主要考查三元一次方程应用及根据不等式关系确定未知数的取值,对三元一次方程组的化简及利用不等式求解是题目难点.3、【解析】【分析】由题意得:x=54m,y−3=54m+2,然后根据同底数幂的逆用得问题的答案.【详解】解:由题意得:,,,即.故答案为:.【点睛】本题考查了有理数的乘方、同底数幂乘法的逆用,正确理解新规定是解题的关键.4、【解析】【分析】用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为整数,据此判断即可.【详解】故答案为:【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a与n的值是解题的关键.5、59.67%【解析】【分析】设康乃馨、百合、玫瑰的单价分别为x,y,z,由心之春恋的成本得y+3z=9x,佳人如兰的成本为20x,佳人如兰的利润为:()×20x=15x,由守候的利润为5.3x,得守候的成本为10x,求出总成本及总利润,根据利润率公式得到答案.【详解】解:∵三种花束的数量比固定后单种花束的数量并不影响总利润率,∴按题目顺序设三种花束分别为2,3,5束,设康乃馨、百合、玫瑰的单价分别为x,y,z,则心之春恋的成本为:6x+y+3z=15x,∴y+3z=9x,佳人如兰的成本为:2x+2y+6z=2x+2(y+3z)=20x,佳人如兰的利润为:()×20x=15x,由题意得守候的利润为5.3x,守候的成本为:,∴总成本为2×15x+3×20x+5×10x+1(2+3+5)x=150x,∵总利润为:2×9x+3×15x+5×5.3x=89.5x,∴总利润率为:.故答案为:59.67%.【点睛】此题考查了列代数式,整式的混合运算,正确理解题意,掌握利润问题的计算公式正确解答是解题的关键.6、1【解析】【分析】首先利用完全平方公式得出a,b的值,进而得出答案.【详解】解:∵a2+b2+5=4a﹣2b,∴,∴(a﹣2)2+(b+1)2=0,∴a=2,b=﹣1,∴(a+b)2021=(2﹣1)2021=1.故答案为:1【点睛】本题主要考查了完全平方公式的应用,熟练掌握,是解题的关键.7、【解析】【分析】用科学记数法表示较大的数时,一般形式为,其中,为整数.【详解】.故答案为:【点睛】本题考查了科学记数法,科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原来的数,变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数,确定与的值是解题的关键.三、解答题1、(1)27;(2)不正确,答案见解析.【解析】【分析】(1)将中的化为,再根据同底数幂的乘法“同底数幂相乘,底数不变,指数相加”即可得;(2)根据多项式与多项式相乘的法则“多项式与多项式相乘,先用多项式的每一项乘另一个多项式的每一项,再把所得的积相加”和单项式与多项式相乘的法则“单项式与多项式相乘,就是用单项式去乘另一个多项式的每一项,再把所得的积相加”进行解答即可得.【详解】解:(1)3x×9y×3=3x×32y×3=3x+2y+1=33=27;(2)不正确,解:原式=9a2﹣b2﹣4a2+a=5a2﹣b2+a.【点睛】本题考查了整式的乘法,解题的关键是掌握同底数幂的乘法,多项式与多项式相乘的法则和单项式与多项式相乘的法则.2、(1)40;(2)=70°;(3)t的值为10.【解析】【分析】(1)根据平行线性质求出∠EPB=∠CDE=70°,根据∠ABE是△BEP的外角可求∠E=∠ABE-∠EPB=110°-70°=40°即可;(2)根据,得出∠GFB=∠FBE,∠HDF=∠PFD,根据FH平分,得出∠GFH=∠HFP,可得∠GFB=2∠HFB=2∠HFD+2∠DFP,根据DF平分,得出∠FDH=∠FDE=∠PFD,可得∠EPB=∠PDH=2∠PDF=2∠PFD,根据∠EBF为△EBP的外角,可证∠E=2∠DFH,根据,解方程得出∠DFH=20°,根据,得出∠G+∠GFH=90°,得出∠G+∠PFD=90°-∠HFD=90°-20°=70°即可;(3)当时,∠HFP=∠HFD+∠DFP=45°,可得∠GFH=∠HFP=45°,∠G=45°,当其中一条边与的边DF′互相垂直,分三种情况当G′H′⊥DF′时,FH′交CD与S,FH′∥F′D,∠CDF′=25°+5t,∠FSC=45°+3°t,列方程25°+5t=45°+3°t,当GF⊥F′D时,GF交CD于R,交DF′于Q,∠HDF′=25°+5t,∠CRG=∠GFA=3t-90°,∠QRD+∠QDR=90°,列方程3t-90°+180°-(25+5t)=90°,当H′F⊥DF′,H′F交CD于U,交DF′于V,∠HDF′=25°+5°t,∠CUF=∠AFH′=3°t-90°-45°,∠VUD+∠UDV=90°,列方程180°-(25°+5°t)+3°t-90°-45°=90°即可.(1)解:∵,,∴∠EPB=∠CDE=70°,∵∠ABE是△BEP的外角,,∴∠E=∠ABE-∠EPB=110°-70°=40°,故答案为:40;(2)解:∵,∴∠GFB=∠FBE,∠HDF=∠PFD∵FH平分,∴∠GFH=∠HFP,∴∠GFB=2∠HFB=2∠HFD+2∠DFP∵DF平分,∴∠FDH=∠FDE=∠PFD,∴∠EPB=∠PDH=2∠PDF=2∠PFD∵∠EBF为△EBP的外角,∴∠EBF=∠E+∠EPB=∠E+2∠PFD,∴2∠HFD+2∠DFP=∠E+2∠PFD,∴∠E=2∠DFH,∵,∴4∠DFH=3∠DFH+20°,∴∠DFH=20°,∵,∴∠FHG=90°,∴∠G+∠GFH=90°,∴∠G+∠PFH=∠G+∠HFD+∠PFD=90°,∴∠G+∠PFD=90°-∠HFD=90°-20°-70°,∴=70°;(3)当时,∠HFP=∠HFD+∠DFP=45°,∴∠GFH=∠HFP=45°,∴∠G=45°,当其中一条边与的边DF′互相垂直,分三种情况,当G′H′⊥DF′时,FH′交CD与S,FH′∥F′D,∠FSC=∠CDF′,∠CDF′=25°+5t,∠FSC=45°+3°t,∴25°+5t=45°+3°t,解得t=10,当GF⊥F′D时,GF交CD于R,交DF′于Q,∠HDF′=25°+5t,∠CRG=∠GFA=3t-90°,∠QRD+∠QDR=90°即3t-90°+180°-(25+5t)=90°,解得t=-12.5<0舍去,当H′F⊥DF′,H′F交CD于U,交DF′于V,∠HDF′=25°+5°t,∠CUF=∠AFH′=3°t-90°-45°,∵∠VUD+∠UDV=90°,∴180°-(25°+5°t)+3°t-90°-45°=90°,解得t=-35<0舍去,综合t的值为10.【点睛】本题考查平行线性质,三角形外角性质,角平分线有关的计算,解一元一次方程,余角性质,直线垂直,图形旋转性质,掌握平行线性质,三角形外角性质,角平分线有关的计算,解一元一次方程,余角性质,直线垂直,图形旋转性质,根据余角性质列方程是解题关键.3、(1)x<2(2)x>﹣12【解析】【分析】(1)不等式两边都乘以-2即可得到解集;(2)不等式的两边同时减去x,再乘以2即可求出解集.(1)解:-x>-1,两边都乘以-2,得x<2.(2)解:原不等式的两边同时减去x,得x>﹣6,不等式的两边同时乘以2,得x>﹣12.【点睛】此题考查了解一元一次不等式,正确掌握解不等式的步骤及方法是解题的关键.4、(1)240(2)10(3)20或42.5或65(4)195【解析】【分析】(1)根据点P的运动可求出运动时间,再根据路程=速度×时间可求解;(2)若∠FAE与∠B互余,则∠FAE=30°,由此可直接得出时间;(3)分三种情况分类讨论,画出图形列出方程求解即可;(4)由于三角形有三条边,分三种情况讨论,分别求出t的值,再求和即可.(1)解:当点P到达点B时,所用时间t=160÷2=80(s),此时∠FAE=3°×80=240°,故答案为:240;(2)解:当0<t<60时,点P在AB上,由题意可知∠BAC=30°,∠B=60°,若∠FAE与∠B互为余角,则∠FAE=30°,∴t=30°÷3°=10(s),故答案为:10;(3)解:根据题意可知,∠EAD=45°,若AE、AD、AB三条射线中,其中一条是另外两条射线夹角(小于180°)的角平分线,需要分三种情况:①当射线AD是∠BAE的平分线时,如图1,此时∠EAD=∠BAD=45°,∴∠EAF=180°-∠BAC-∠EAD-∠BAD=60°,此时t=60°÷3°=20(s);②当射线AB是∠DAE的平分线时,如图2,此时∠EAB=∠DAB=22.5°,∴∠EAF=180°-∠BAC-∠BAE=137.5°,∴t=137.5°÷3°=42.5(s);③当射线AE是∠BAD的平分线时,如图3,此时∠DAE=∠BAE=45°,∴∠EAC=∠BAE-∠BAC=15°,∴t=(180°+15°)÷3°=65(s),故答案为:20或42.5或65.(4)解:当△ACP的面积大于△ABC面积的一半时,点P在与AC平行的△ABC的中位线上方即可,此时t的取值范围为:160÷2÷2<t<(160+80÷2)÷2,即40<t<100,∴120°<∠FAE<300°,根据题意可知,若△ADE的边所在直线与直线AB的夹角为90度,需要分以下三种情况:①边DE⊥AB时,如图4,此时∠EAF=150°,∴t=150°÷3°=50(s);②边AD⊥AB时,如图5,此时,射线AE旋转的角度为:150°+90°-45°=195°,∴t=195°÷3°=65(s);③边AE⊥AB时,如图6,此时,旋转角度为:150°+90°=240°,∴t=240°÷3°=80(s),∴50+65+80=195(s),故答案为:195.【点睛】本题角度的计算,包括垂直的定义,角平分线的定义等,涉及考查几何直观能力,分类讨论的数学思想,进行正确的分类及对t的限制是解题关键.5、(1)12(2)6(3)5【解析】【分析】(1)根据代入计算即可;(2)由于(4-x)+x=4,将转化为,然后代入计算即可;(3)根据面积公式可得(x-1)(x-2)=12,设x-1=a,x-2=b,再根据代入得到,进而求出x.(1)解:∵x+y=8,∴,即,又∵,∴2xy=24,∴xy=12;(2)解:=16-2×5=6,故答案为:6;(3)解:由题意得(x-1)(x-2)=12,设x-1=a,x-2=b,则ab=12,∴a-b=(x-1)-(x-2)=1,又∵,∴,∴,∴2x-3=±7,∴x=5或x=-2(舍).故答案为:5.【点睛】本题考查完全平方公式,多项式乘以多项式,掌握完全平方公式的结构特征是正确解答的关键.6、(1)①画图见解析;②画图见解析;③画图见解析;(2)2【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 主债权合同(标准版)
- 2025年教师招聘之《幼儿教师招聘》题库综合试卷附答案详解(a卷)
- 2025年学历类自考中国古代文学作品选(一)-西方行政学说史参考题库含答案解析(5卷)
- 2025年学历类自考中国古代文学作品选(一)-古代汉语参考题库含答案解析(5卷)
- 教师招聘之《幼儿教师招聘》考前自测高频考点模拟试题附答案详解(黄金题型)
- 2025年教师招聘之《幼儿教师招聘》经典例题含答案详解(精练)
- 2025社会儿童自考试题及答案
- 2025年教师招聘之《幼儿教师招聘》押题练习试卷附答案详解(精练)
- 2025商务交流自考试题及答案
- 教师招聘之《幼儿教师招聘》押题模拟及答案详解【基础+提升】
- 2025年市级科技馆招聘笔试重点
- 2025西电考试题及答案
- 2025年先兆流产的护理查房
- 2025年部编版新教材语文九年级上册教学计划(含进度表)
- 2022.12六级真题第3套答案及详解
- 食堂工作人员食品安全培训
- 测绘项目设备配置方案(3篇)
- 输血反应的早期识别与干预
- 寄宿制初中宿舍管理办法
- (高清版)DB11∕T 2440-2025 学校食堂病媒生物防制规范
- GB/T 7324-2010通用锂基润滑脂
评论
0/150
提交评论