版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学上册《轴对称》定向测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有()A.2条 B.4条 C.6条 D.8条2、如图所示,已知△ABC(AC<AB<BC),用尺规在线段BC上确定一点P,使得PA+PC=BC,则符合要求的作图痕迹是()A. B. C. D.3、如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为(
)A.50° B.70° C.75° D.80°4、下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A. B. C. D.5、如图,在中,,,,,则的长为(
).A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,在△ABC中,∠ACB的平分线交AB于点D,
DE⊥AC于点E,F为BC上一点,若DF=AD,△ACD与△CDF的面积分别为10和4,则△AED的面积为______2、如图,以正六边形ADHGFE的一边AD为边向外作正方形ABCD,则∠BED=_______°.3、如图,已知等边三角形ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在B′处,DB′,EB′分别交AC于点F,G.若∠ADF=80°,则∠DEG的度数为________.4、如图,将一张直角三角形纸片对折,使点B、C重合,折痕为DE,连接DC,若AC=6cm,∠ACB=90°,∠B=30°,则△ADC的周长是_____cm.5、如图,在中,,以为边,作,满足,为上一点,连接,,连接.下列结论中正确的是________(填序号)①;②;③若,则;④.三、解答题(5小题,每小题10分,共计50分)1、(1)如图①,和都是等边三角形,且点,,在一条直线上,连结和,直线,相交于点.则线段与的数量关系为_____________.与相交构成的锐角的度数为___________.(2)如图②,点,,不在同一条直线上,其它条件不变,上述的结论是否还成立.(3)应用:如图③,点,,不在同一条直线上,其它条件依然不变,此时恰好有.设直线交于点,请把图形补全.若,则___________.2、在中,,D为BC延长线上一点,点E为线段AC,CD的垂直平分线的交点,连接EA,EC,ED.(1)如图1,当时,则_______°;(2)当时,①如图2,连接AD,判断的形状,并证明;②如图3,直线CF与ED交于点F,满足.P为直线CF上一动点.当的值最大时,用等式表示PE,PD与AB之间的数量关系为_______,并证明.3、如图,是边长为1的等边三角形,,,点,分别在,上,且,求的周长.4、如图,在中,,的垂直平分线分别交、于点D、E,的垂直平分线分别交、于点F、G.求的周长.5、图①、图②均是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,△ABC的顶点均在格点上,只用无刻度的直尺,在给定的网格中,分别按下列要求画图.(1)在图①中的线段AB上找一点D,连结CD,使∠BCD=∠BDC.(2)在图②中的线段AC上找一点E,连结BE,使∠EAB=∠EBA.-参考答案-一、单选题1、B【解析】【分析】根据轴对称的性质即可画出对称轴进而可得此图形的对称轴的条数.【详解】解:如图,因为以正方形的边长为直径,在正方形内画半圆得到的图形,所以此图形的对称轴有4条.故选:B.【考点】本题考查了正方形的性质、轴对称的性质、轴对称图形,解决本题的关键是掌握轴对称的性质.2、C【解析】【分析】根据线段垂直平分线的性质可得,作AB的垂直平分线,交BC于点P,则PB+PC=BC,进而可以判断.【详解】解:作AB垂直平分线交BC于点P,连接PA,则PA=PB,所以PA+PC=PB+PC=BC.所以符合要求的作图痕迹是C.故选:C.【考点】本题考查了作图-复杂作图,解决本题的关键是掌握线段垂直平分线的性质.3、B【解析】【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.【详解】∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC-∠DAC=70°,故选B.【考点】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.4、B【解析】【分析】结合轴对称图形的概念进行求解即可.【详解】解:根据轴对称图形的概念可知:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选:B.【考点】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5、B【解析】【分析】根据等腰三角形性质求出∠B,求出∠BAC,求出∠DAC=∠C,求出AD=DC=4cm,根据含30度角的直角三角形性质求出BD,即可求出答案.【详解】∵AB=AC,∠C=30°,∴∠B=30°,∵AB⊥AD,AD=4cm,∴BD=8cm,∵∠ADB=60°∠C=30°,∴∠DAC=∠C=30°,∴CD=AD=4cm,∴BC=BD+CD=8+4=12cm.故选B.【考点】本题考查了等腰三角形的性质,含30度角的直角三角形性质,三角形的内角和定理的应用,解此题的关键是求出BD和DC的长.二、填空题1、3【解析】【分析】如图(见解析),过点D作,根据角平分线的性质可得,再利用三角形全等的判定定理得出,从而有,最后根据三角形面积的和差即可得出答案.【详解】如图,过点D作平分,又则解得故答案为:3.【考点】本题考查了角平分线的性质、直角三角形全等的判定定理等知识点,通过作辅助线,构造两个全等的三角形是解题关键.2、45°【解析】【详解】∵正六边形ADHGFE的内角为120°,正方形ABCD的内角为90°,∴∠BAE=360°-90°-120°=150°,∵AB=AE,∴∠BEA=(180°-150°)÷2=15°,∵∠DAE=120°,AD=AE,∴∠AED=(180°-120°)÷2=30°,∴∠BED=15°+30°=45°.3、70°【解析】【详解】解:由折叠的性质得到∠BDE=∠B′DE,∵∠ADF=80°,∠ADF+∠BDE+∠B′DE=180°,∴∠BDE=∠B′DE=50°,∵△ABC为等边三角形,∴∠B=60°,则∠BED=180°-(50°+60°)=70°.∴∠DEG=∠BED=70°,故答案为:70°4、18【解析】【分析】【详解】解:根据折叠前后角相等可知,∠B=∠DCB=30°,∠ADC=∠ACD=60°,∴AC=AD=DC=6,∴ADC的周长是18cm.故答案为8.5、②③④【解析】【分析】通过延长EB至E',使BE=BE',连接,构造出全等三角形,再利用全等三角形的性质依次分析,可得出正确的结论是②③④.【详解】解:如图,延长EB至E',使BE=BE',连接;∵∠ABC=90°,∴AB垂直平分EE',∴AE=AE',∴∠1=∠2,∠3=∠5,∵∠1=,∴∠E'AE=2∠1=∠CAD,∴∠E'AC=∠EAD,
又∵AD=AC,∴,∴∠5=∠4,∠ADE=∠ACB(即②正确),∴∠3=∠4;当∠6=∠1时,∠4+∠6=∠3+∠1=90°,此时,∠AME=180°-(∠4+∠6)=90°,当∠6≠∠1时,∠4+∠6≠∠3+∠1,∠4+∠6≠90°,此时,∠AME≠90°,∴①不正确;若CD∥AB,则∠7=∠BAC,∵AD=AC,∴∠7=∠ADC,∵∠CAD+∠7+∠ADC=180°,∴,
∴∠1+∠7=90°,∴∠2+∠7=90°,∴∠2+∠BAC=90°,即∠E'AC=90°,由,∴∠EAD=∠CAE'=90°,E'C=DE,∴AE⊥AD(即③正确),DE=E'B+BE+CE=2BE+CE(即④正确);故答案为:②③④.【考点】本题综合考查了线段的垂直平分线的判定与性质、全等三角形的判定与性质、等腰三角形的性质、平行线的性质等内容;要求学生能够根据已知条件通过作辅助线构造出全等三角形以及能正确运用全等三角形的性质得到角或线段之间的关系,能进行不同的边或角之间的转换,考查了学生的综合分析和数形结合的能力.三、解答题1、(1)相等,;(2)成立,证明见解析;(3)见解析,4.【解析】【分析】(1)证明△BCD≌△ACE,并运用三角形外角和定理和等边三角形的性质求解即可;(2)是第(1)问的变式,只是位置变化,结论保持不变;(3)根据∠AEC=30°,判定AE是等边三角形CDE的高,运用前面的结论,把条件集中到一个含有30°角的直角三角形中求解即可.【详解】(1)相等;
.理由如下:∵和都是等边三角形,∴,,,∴,在和中,∴.∴,.又∵,∴.(2)成立;理由如下:证明:∵和都是等边三角形,∴,,,∴,在和中,∴.∴,.又∵,∴.(3)补全图形(如图),∵△CDE是等边三角形,∴∠DEC=60°,∵∠AEC=30°,∴∠AEC=∠AED,∴EQ⊥DQ,∴∠DQP=90°,根据(1)知,∠BDC=∠AEC=30°,∵PQ=2,∴DP=4.故答案为:4.【考点】本题是一道猜想证明题,以两线段之间的大小关系为基础,考查了等边三角形的性质,三角形的全等,直角三角形的性质,证明两个手拉手模型三角形全等是解题的关键.2、(1)80;(2)是等边三角形;(3).【解析】【分析】(1)根据垂直平分线性质可知,再结合等腰三角形性质可得,,利用平角定义和四边形内角和定理可得,由此求解即可;(2)根据(1)的结论求出即可证明是等边三角形;(3)根据利用对称和三角形两边之差小于第三边,找到当的值最大时的P点位置,再证明对称点与AD两点构成三角形为等边三角形,利用旋转全等模型即可证明,从而可知,再根据30°直角三角形性质可知即可得出结论.【详解】解:(1)∵点E为线段AC,CD的垂直平分线的交点,∴,∴,,∴,∵,∴,∵,∴,∵在中,,,∴,∴,故答案为:.(2)①结论:是等边三角形.证明:∵在中,,,∴,由(1)得:,,∴是等边三角形.②结论:.证明:如解图1,取D点关于直线AF的对称点,连接、;∴,∵,等号仅P、E、三点在一条直线上成立,如解图2,P、E、三点在一条直线上,由(1)得:,又∵,∴,又∵,,∴,∵点D、点是关于直线AF的对称点,∴,,∴是等边三角形,∴,,∵是等边三角形,∴,,∴,∴,在和中,,∴(SAS)∴,∵,∴,在中,,,∴,∴【考点】本题是三角形综合题,主要考查了等腰三角形、等边三角形的性质和判定,全等三角形性质和判定等知识点,解题关键是利用对称将转化为三角形三边关系找到P的位置,并证明对称点与AD两点构成三角形为等边三角形.3、2【解析】【分析】延长至点,使,连接,证明推出,,进而得到,从而证明,推出EF=CP,由此求出的周长=AB+AC得到答案.【详解】解:如图,延长至点,使,连接.∵是等边三角形,∴.∵,,∴,∴,∴.在和中,,∴,∴,.∵,,∴,∴,∴.在和中,,∴,∴,∴,∴的周长.【考点】此题考查全等三角形的判定及性质,等边三角形的性质,等腰三角形等边对等角的性质,题中辅助线的引出是解题的关键.4、10【解析】【分析】根据线段垂直平分线的性质可得,据此即可求解.【详解】解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高校英美文学课程考试题库
- 医院心理咨询师提成方案
- 咨询师快速成长方案
- 工程造价咨询服务方案表
- 医院等级评审动员会发言稿范本
- 镇上发廊活动策划方案
- 三亚装饰物拆除施工方案
- 高校科研项目申报书写作要点
- 营销运营的方案
- 九江县导示牌施工方案
- 电测应力应变实验课件ppt
- 大学生研究生就业方案
- 乘法小故事小学二年级
- 民航服务沟通PPT完整全套教学课件
- (鲁科版五四制)小学三四五年级全部单词(带音标)
- 中考模拟考试语文答题卡Word版可以编辑(全黑色)
- 2023年度广东省成人高考《英语》(高升本)真题库及答案(单选题型)
- 新冠肺炎疫情疫源地消毒技术指南
- 教学设计 授人与鱼不如授人以渔
- LY/T 2501-2015野生动物及其产品的物种鉴定规范
- HY/T 023-2018中国海洋观测站(点)代码
评论
0/150
提交评论