




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省临江市中考数学真题分类(数据分析)汇编专题测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、为了增强学生预防新冠肺炎的安全意识,某校开展疫情防控知识竞赛.来自不同年级的30名参赛同学的得分情况如下表所示,这些成绩的中位数和众数分别是(
)成绩/分84889296100人数/人249105A.92分,96分 B.94分,96分 C.96分,96分 D.96分,100分2、疫情期间,某商店连续7天销售口罩的盒数分别为10,12,14,13,12,12,11.关于这组数据,以下结论错误的是(
)A.众数是12 B.平均数是12 C.中位数是12 D.方差是3、甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是(
)A.甲的成绩比乙稳定 B.甲的最好成绩比乙高C.甲的成绩的平均数比乙大 D.甲的成绩的中位数比乙大4、甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种8千克,乙种10千克,丙种3千克糖果混在一起,则售价应定为每千克(
)A.6.7元 B.6.8元 C.7.5元 D.8.6元5、已知一组数据,,,,的平均数是2,方差是,那么另一组数据,,,,,的平均数和方差分别是.A. B. C. D.6、如图,是某次射击比赛中,一位选手五次射击成绩的频数分布直方图,则关于这位选手的成绩(单位:环),下列说法错误的是(
)A.众数是 B.平均数是 C.中位数是 D.方差是7、有15名学生参加学校举办的“最强大脑”智力竞赛,比赛结束后根据每个学生的成绩计算平均数、中位数、众数、方差,若去掉一个最高分,一个最低分,则一定不会发生变化的是()A.平均数 B.中位数 C.众数 D.方差8、数据﹣1,0,3,4,4的平均数是()A.4 B.3 C.2.5 D.2第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、已知2,3,5,m,n五个数据的方差是2,那么3,4,6,m+1,n+1五个数据的方差是______.2、根据第七次全国人口普查,华东六省60岁及以上人口占比情况如图所示,这六省60岁及以上人口占比的中位数是__________.3、一组数据是4,x,5,10,11共五个数,其平均数为8,则这组数据的众数是___.4、为了庆祝中国共产党成立周年,某校举行“党在我心中”演讲比赛,评委将从演讲内容,演讲能力,演讲效果三个方面给选手打分,各项成绩均按百分制计,然后再按演讲内容占,演讲能力占,演讲效果占,计算选手的综合成绩(百分制).小婷的三项成绩依次是,,,她的综合成绩是__________.5、黔东南州某校今年春季开展体操活动,小聪收集、整理了成绩突出的甲、乙两队队员(各50名)的身高得到:平均身高(单位:cm)分别为:=160,,方差分别为:,,现要从甲、乙两队中选出身高比较整齐的一个队参加上一级的体操比赛,根据上述数据,应该选择_________.(填写“甲队”或“乙队”)6、一组数据5,8,x,10,4的平均数为2x,则x=_____,这组数据的方差为_____.7、下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2:甲乙丙丁平均数(cm)561560561560方差s2(cm2)3.53.515.516.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择_____.三、解答题(7小题,每小题10分,共计70分)1、为庆祝中国共产党建党100周年,某校开展了以“学习百年党史,汇聚团结伟力”为主题的知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分成五个等级,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:等级成绩(1)本次调查一共随机抽取了_________名学生的成绩,频数分布直方图中__________;(2)补全学生成绩频数分布直方图;(3)所抽取学生成绩的中位数落在________等级;(4)若成绩在80分及以上为优秀,全校共有2000名学生,估计成绩优秀的学生有多少人?2、小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:.小云所住小区5月1日至30日的厨余垃圾分出量统计图:.小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:时段1日至10日11日至20日21日至30日平均数100170250(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为(结果取整数)(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为5月11日至20日的厨余垃圾分出量的方差为,5月21日至30日的厨余垃圾分出量的方差为.直接写出的大小关系.3、我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.4、小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是品牌,月平均销售量最稳定的是品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.5、某社区为了增强居民节约用水的意识,随机调查了部分家庭一年的月均用水量(单位:t).根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的家庭个数为________,图①中m的值为_______;(Ⅱ)求统计的这组月均用水量数据的平均数、众数和中位数.6、我校小李同学对北大附中初中三个年级的学生年龄构成很感兴趣,整理数据并绘制如图所示不完整的统计图.依据信息解答下列问题.(1)求样本容量;(2)直接写出样本数据的众数、中位数;(3)已知北大附中实验学校一共有1920名学生,请估计全校年龄在14岁及以上的学生大约有多少人.7、农科院为了解某种小麦的长势,从中随机抽取了部分麦苗,对苗高(单位:)进行了测量.根据统计的结果,绘制出如下的统计图①和图②.
请根据相关信息,解答下列问题:(Ⅰ)本次抽取的麦苗的株数为__________,图①中m的值为__________;(Ⅱ)求统计的这组苗高数据的平均数、众数和中位数.-参考答案-一、单选题1、B【解析】【分析】根据中位数的定义和众数的定义分别求解即可.【详解】解:由统计表得共有30个数据,第15、16个数据分别是92,96,∴中位数是;由统计表得数据96出现的次数最多,∴众数为96.故选:B【考点】本题考查了求一组数据的中位数和众数.中位数是将一组数据由小到大(由大到小)排序后,位于中间位置的数据,当有偶数个数据时,取中间两数的平均数;众数是一组数据出现次数最多的数.2、D【解析】【分析】根据众数、平均数、中位数及方差的定义分别对每一项进行分析,即可得出答案.【详解】解:A.12出现了3次,出现的次数最多,则这组数据的众数是12,故本选项正确,不符合题意;B.这组数据的平均数:=12,故本选项正确,不符合题意;C.把这些数从小到大排列为:10,11,12,12,12,13,14,中位数是12,故本选项正确,不符合题意;D.方差是:×[(10﹣12)2+(11﹣12)2+3×(12﹣12)2+(13﹣12)2+(14﹣12)2]=,故本选项错误,符合题意;故选:D.【考点】本题考查中位数、众数、平均数、方差,掌握中位数、众数、平均数、方差的计算方法是解决问题的关键.3、A【解析】【分析】分别计算出两人成绩的平均数、中位数、方差可得出答案.【详解】甲同学的成绩依次为:、、、、,则其中位数为,平均数为,方差为;乙同学的成绩依次为:、、、、,则其中位数为,平均数为,方差为,甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低.故选.【考点】本题考查了方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均数的离散程度越小,稳定性越好.也考查了中位数.4、B【解析】【详解】由题意可得:(元).故选B.5、D【解析】【分析】根据数据的变化和其平均数及方差的变化规律求得新数据的平均数及方差即可.【详解】解:∵数据x1,x2,x3,x4,x5的平均数是2,∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是3×2-2=4;∵数据x1,x2,x3,x4,x5的方差为,∴数据3x1,3x2,3x3,3x4,3x5的方差是×32=3,∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故选D.【考点】本题考查了方差的知识,说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.6、B【解析】【分析】先根据频数分布直方图得出五次射击的成绩,再根据众数与中位数的定义、平均数与方差的公式即可得.【详解】由频数分布直方图得:该选手五次射击的成绩为则众数是8平均数是中位数是8方差是故选:B.【考点】本题考查了频数分布直方图、众数与中位数的定义、平均数与方差的公式,掌握理解统计调查的相关知识是解题关键.7、B【解析】【分析】根据中位数的定义求解即可.【详解】去掉一个最高分和一个最低分对中位数没有影响.故选:B.【考点】本题考查了统计量的选择,解题的关键是了解中位数的定义.8、D【解析】【分析】根据题目中的数据,可以求得这组数据的平均数,本题得以解决.【详解】解:==2,故选:D.【考点】本题考查算术平均数,解答本题的关键是明确算术平均数的计算方法.二、填空题1、2【解析】【详解】解:由题意知,原数据的平均数为,新数据的每一个数都加了1,则平均数变为+1,则原来的方差S12=[(x1-)2+(x2-)2+…+(x5-)2]=2,现在的方差S22=[(x1+1--1)2+(x2+1--1)2+…+(x5+1--1)2]=[(x1-)2+(x2-)2+…+(x5-)2]=2,所以方差不变.故答案为:2.【考点】本题考查了方差,方差是用来衡量一组数据波动大小的量,每个数都加1所以波动不会变,方差不变,即数据的波动情况不变.2、【解析】【分析】由图,将六省60岁及以上人口占比由小到大排列好,共有6个数,所以中位数等于中间两个数之和除以二.【详解】解:由图,将六省人口占比由小到大排列为:,由中位数的定义得:人口占比的中位数为,故答案为:.【考点】本题考查了求解中位数,解题的关键是:将数由小到大排列,根据数的个数分为两类.当个数为奇数时,中位数等于最中间的数;当个数为偶数个时,中位数等于中间两个数之和除以2.3、10【解析】【分析】首先根据平均数算出x的值,再根据众数的定义:一组数据中出现次数最多的数据叫做众数,可得答案.【详解】解:根据题意,得:4+x+5+10+11=5×8,解得x=10,所以这组数据为4、5、10、10、11,则这组数据的众数为10,故答案为:10.【考点】本题主要考查了平均数与众数,根据平均数的求法算出x的值是解决本题的关键.4、89【解析】【分析】根据加权平均数的定义列式计算可得.【详解】解:选手甲的综合成绩为(分,故答案为:89分.【考点】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.5、甲队【解析】【分析】根据方差的意义求解即可.【详解】∵,,∴,∴甲队身高比较整齐.故答案为:甲队.【考点】此题考查了方差的意义,解题的关键是熟练掌握方差的意义.6、
3
6.8##【解析】【分析】本题可用求平均数的公式解出x的值,在运用方差的公式解出方差.【详解】解:∵数据5,8,x,10,4的平均数是2x,∴5+8+x+10+4=5×2x,解得x=3,=2×3=6,s2=[(5﹣6)2+(8﹣6)2+(3﹣6)2+(10﹣6)2+(4﹣6)2]=×(1+4+9+16+4)=6.8.故答案为3,6.8.【考点】本题考查了算术平均数、方差的计算方法,熟练掌握该知识点是本题解题的关键7、甲【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵,∴从甲和丙中选择一人参加比赛,∵,∴选择甲参赛,故答案为甲.【考点】此题考查了平均数和方差,关键是根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.三、解答题1、(1)200,16;(2)见解析;(3);(4)940人【解析】【分析】(1)B等级人数40人÷B等级的百分比为20%,利用抽查人数-其它各组人数即可;(2)C等级200×25%=50人,m=16即可补全频率分布直方图:(3)根据中位数定义即可求即;(4)成绩80分以上的在D、E两等级中人数占抽样的百分比47%乘以学生总数即可.【详解】解:(1)B等级人数40人,由扇形图可知B等级的百分比为20%,∴本次调查一共随机抽取了40÷20%=200名学生的成绩,C等级200×25%=50人∴m=200-40-50-70-24=16故答案为:200,16;(2)C等级200×25%=50人,m=16,补全频率分布直方图如图所示:(3)频率分布直方图已将数据从小到大排序,一共抽查200个数据,根据中位数定义中位数位于第100,101两位置上成绩的平均数,16+40=56100,16+40+50=106101,∴中位数在等级内;故答案为:C(4)成绩80分以上的在D、E两等级中人数为:70+24=94人,占抽样的百分比为94÷200×100%=47%,全校共有2000名学生,成绩优秀的学生有(人).答:全校2000名学生中,估计成绩优秀的学生有940人.【考点】本题考查频率分布直方图和扇形图获取信息,样本容量,补画频率分布直方图,中位数,用样本的百分比含量估计总体中的数目等知识,熟练掌握上述知识是关键.2、(1)173;(2)2.9倍;(3)【解析】【分析】(1)利用加权平均数的计算公式进行计算,即可得到答案;(2)利用5月份的平均数除以4月份的平均数,即可得到答案;(3)直接利用点状图和方差的意义进行分析,即可得到答案.【详解】解:(1)平均数:(千克);故答案为:173;(2)倍;故答案为:2.9;(3)方差反应数据的稳定程度,即从点状图中表现数据的离散程度,所以从图中可知:;【考点】本题考查了方差的意义,平均数,以及数据的分析处理,解题的关键是熟练掌握题意,正确的分析数据的联系.3、(1)平均数(分)中位数(分)众数(分)初中部858585高中部8580100(2)初中部成绩好些(3)初中代表队选手成绩较为稳定【解析】【分析】(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答.(2)根据平均数和中位数的统计意义分析得出即可.(3)分别求出初中、高中部的方差比较即可.【详解】解:(1)初中部5名选手的成绩分别为:75,80,85,85,100,初中部的平均数为:(分),85出现的次数最多,所以初中部5名选手的成绩的众数为85,高中部5名选手的成绩按从小到大排列为:70,75,80,100,100,所以高中部5名选手的成绩的中位数为80;填表如下:平均数(分)中位数(分)众数(分)初中部858585高中部8580100(2)初中部成绩好些.∵两个队的平均数都相同,初中部的中位数高,∴在平均数相同的情况下中位数高的初中部成绩好些.(3)∵,∴<,因此,初中代表队选手成绩较为稳定.【考点】此题考查了众数,中位数和平均数以及方差的求解,解题的关键是熟练掌握众数,中位数和平均数以及方差的求法.4、(1)B,C;(2)2019年其他品牌的电视机年销售总量是115.2万台;(3)建议购买C品牌(建议购买B品牌),理由见解析【解析】【分析】(1)从条形统计图、折线统计图可以得出答案;(2)求出总销售量,“其它”的所占的百分比;(3)从市场占有率、平均销售量等方面提出建议.【详解】解:(1)由条形统计图可得,2014~2019年三种品牌电视机销售总量最多的是B品牌,是1746万台;由条形统计图可得,2014~2019年三种品牌电视机月平均销售量最稳定的是C品牌,比较稳定,极差最小;故答案为:B,C;(2)∵20×12÷25%=960(万台),1﹣25%﹣29%﹣34%=12%,∴960×12%=115.2(万台);答:2019年其他品牌的电视机年销售总量是115.2万台;(3)建议购买C品牌,因为C品牌2019年的市场占有率最高,且5年的月销售量最稳定;建议购买B品牌,因为B品牌的销售总量最多,受到广大顾客的青睐.【考点】本题考查了条形统计图,折线统计图,扇形统计图,认真审题,搞清三个统计图分别反映不同意义是解题关键.5、(Ⅰ)50,20;(Ⅱ)这组数据的平均数是5.9;众数为6;中位数为6.【解析】【分析】(Ⅰ)利用用水量为5t的家庭个数除以其所占百分比即可求出本次接受调查的家庭个数;利用用水量为6.5t的家庭个数除以本次接受调查的家庭个数即得出其所占百分比,即得出m的值.(Ⅱ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广发银行太原分行社会招聘笔试参考题库附答案解析
- 2025年高科技企业研发人员劳动合同及知识产权归属合同
- 2025年度工业废气处理设施安装与维护合同范本
- 2025年度深海油气田钢结构检修与加固服务协议
- 2025年公共场所食品安全管理与监督协议
- 2025年胆囊疾病试题及答案
- 2025年城市地下车库使用权转让及管理服务合同规范文本
- 2025年绿色食品冷链运输及售后服务一体化合同范本
- 2025年夫妻共同财产分割与补偿协议范本解析
- 2025年生物医学工程创新项目合作协议书
- 2024年小学一年级新生入学开学第一课培训课件
- 2024风力发电机组预应力基础锚栓笼组合件技术规范
- 第二人民医院医药代表来院预约登记表
- 《大青树下的小学》公开课一等奖创新教案
- 船体装配基础知识课件
- EPC项目设计人员组织架构图
- 华润电力测评真题及答案
- 中医药学概论教学大纲05.9.5
- 2024年华为云服务H13-821 V3.0 HCIP考试复习题库(含答案)
- 《台海形势分析》课件
- 《华住酒店集团》课件
评论
0/150
提交评论