版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学下册《平行四边形》综合测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,在△ABC中,∠ABC=90°,AC=18,BC=14,D,E分别是AB,AC的中点,连接DE,BE,点M在CB的延长线上,连接DM,若∠MDB=∠A,则四边形DMBE的周长为()A.16 B.24 C.32 D.402、如图,已知在正方形ABCD中,厘米,,点E在边AB上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒.若存在a与t的值,使与全等时,则t的值为()A.2 B.2或1.5 C.2.5 D.2.5或23、下列说法正确的是()A.平行四边形的对角线互相平分且相等 B.矩形的对角线相等且互相平分C.菱形的对角线互相垂直且相等 D.正方形的对角线是正方形的对称轴4、如图,菱形ABCD的对角线AC、BD的长分别为6和8,O为AC、BD的交点,H为AB上的中点,则OH的长度为()A.3 B.4 C.2.5 D.55、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为()A.46.5cm B.22.5cm C.23.25cm D.以上都不对第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,每个小正方形的边长都为1,△ABC是格点三角形,点D为AC的中点,则线段BD的长为_____.2、如图,在中,,,,为上的两个动点,且,则的最小值是________.3、如图,已知在矩形中,,,将沿对角线AC翻折,点B落在点E处,连接,则的长为_________.4、已知如图,点E,F分别在正方形的边,上,,若,,则_________.5、如图,正方形ABCD的边长为做正方形,使A,B,C,D是正方形各边的中点;做正方形,使是正方形各边的中点……以此类推,则正方形的边长为__________.三、解答题(5小题,每小题10分,共计50分)1、如图,平行四边形ABCD中,对角线AC、BD相交于点O,AB⊥AC,AB=3,AD=5,求BD的长.2、综合与实践(1)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,则MN,AM,CN的数量关系为.(2)如图2,在四边形ABCD中,BC∥AD,AB=BC,∠A+∠C=180°,点M、N分别在AD、CD上,若∠MBN=∠ABC,试探索线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.(3)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=∠ABC,试探究线段MN、AM、CN的数量关系为.3、如图,将直角三角形分割成一个正方形和两对全等的直角三角形,在Rt△ABC中,∠ACB=90°,四边形FCEO是正方形,Rt△AOF≌Rt△AOD,Rt△BOE≌Rt△BOD.若设正方形的边长为x,则可以探究x与直角三角形ABC的三边a,b,c之间的关系.探究:∵Rt△BOE≌Rt△BOD,∴BD=BE=a﹣x,∵Rt△AOF≌Rt△AOD,∴AD=AF=b﹣x,∵AB=BD+AD,∴a﹣x+b﹣x=c,∴x=.(1)小颖同学发现利用S△ABC=S△AOB+S△AOC+S△BOC也可以探究正方形的边长x与直角三角形ABC的三边a,b,c之间的关系.请你根据小颖的思路,完成她的探究过程.(2)请你结合探究和小颖的解答过程验证勾股定理.
4、如图,▱ABCD的对角线AC,BD相交于点O,点E,点F在线段BD上,且DE=BF.求证:AE∥CF.5、(1)先化简,再求值:(a+b)(a﹣b)﹣a(a﹣2b),其中a=1,b=2;(2)如图,菱形ABCD中,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.证明:四边形AECF是矩形.-参考答案-一、单选题1、C【解析】【分析】由中点的定义可得AE=CE,AD=BD,根据三角形中位线的性质可得DE//BC,DE=BC,根据平行线的性质可得∠ADE=∠ABC=90°,利用ASA可证明△MBD≌△EDA,可得MD=AE,DE=MB,即可证明四边形DMBE是平行四边形,可得MD=BE,进而可得四边形DMBE的周长为2DE+2MD=BC+AC,即可得答案.【详解】∵D,E分别是AB,AC的中点,∴AE=CE,AD=BD,DE为△ABC的中位线,∴DE//BC,DE=BC,∵∠ABC=90°,∴∠ADE=∠ABC=90°,在△MBD和△EDA中,,∴△MBD≌△EDA,∴MD=AE,DE=MB,∵DE//MB,∴四边形DMBE是平行四边形,∴MD=BE,∵AC=18,BC=14,∴四边形DMBE的周长=2DE+2MD=BC+AC=18+14=32.故选:C.【点睛】本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键.2、D【解析】【分析】根据题意分两种情况讨论若△BPE≌△CQP,则BP=CQ,BE=CP;若△BPE≌△CPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.【详解】解:当,即点Q的运动速度与点P的运动速度都是2厘米/秒,若△BPE≌△CQP,则BP=CQ,BE=CP,∵AB=BC=10厘米,AE=4厘米,∴BE=CP=6厘米,∴BP=10-6=4厘米,∴运动时间t=4÷2=2(秒);当,即点Q的运动速度与点P的运动速度不相等,∴BP≠CQ,∵∠B=∠C=90°,∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.∴点P,Q运动的时间t=(秒).综上t的值为2.5或2.故选:D.【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.同时要注意分类思想的运用.3、B【解析】【分析】根据平行四边形、矩形、菱形、正方形的性质定理判断即可.【详解】解:平行四边形的对角线互相平分,不一定相等,A错误;矩形的对角线相等且互相平分,B正确;菱形的对角线互相垂直,不一定相等,C错误;正方形的对角线所在的直线是正方形的对称轴,D错误;故选:B.【点睛】本题考查了命题的真假判断,掌握平行四边形、矩形、菱形、正方形的性质是解题的关键.4、C【解析】【分析】根据菱形的性质求得边长,进而根据三角形中位线定理求得的长度.【详解】∵四边形ABCD是菱形,∴AO=OC,OB=OD,AO⊥BO,又∵点H是AD中点,∴OH是△DAB的中位线,在Rt△AOB中,AB5,则OHAB=2.5故选C【点睛】本题考查了菱形的性质,三角形中位线定理,求得的长是解题的关键.5、C【解析】【分析】如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,则,,,即可得到△DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可.【详解】解:如图所示,,,,DE,DF,EF分别是三角形ABC的中位线,GH,GI,HI分别是△DEF的中位线,∴,,,∴△DEF的周长,同理可得:△GHI的周长,∴第三次作中位线得到的三角形周长为,∴第四次作中位线得到的三角形周长为∴第三次作中位线得到的三角形周长为∴这五个新三角形的周长之和为,故选C.【点睛】本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理.二、填空题1、##【解析】【分析】根据勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出△ABC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:,,,,∴∠ABC=90°,∵点D为AC的中点,∴BD为AC边上的中线,∴BD=AC,故答案为:【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,勾股定理逆定理的应用,判断出△ABC是直角三角形是解题的关键.2、【解析】【分析】过点A作AD//BC,且AD=MN,连接MD,则四边形ADMN是平行四边形,作点A关于BC的对称点A′,连接AA′交BC于点O,连接A′M,三点D、M、A′共线时,最小为A′D的长,利用勾股定理求A′D的长度即可解决问题.【详解】解:过点A作AD//BC,且AD=MN,连接MD,则四边形ADMN是平行四边形,∴MD=AN,AD=MN,作点A关于BC的对称点A′,连接AA′交BC于点O,连接A′M,则AM=A′M,∴AM+AN=A′M+DM,∴三点D、M、A′共线时,A′M+DM最小为A′D的长,∵AD//BC,AO⊥BC,∴∠DA=90°,∵,,,∴BC=BO=CO=AO=,∴,在Rt△AD中,由勾股定理得:D=∴的最小是值为:,故答案为:【点睛】本题主要考查了等腰三角形的性质,平行四边形的判定与性质,勾股定理等知识,构造平行四边形将AN转化为DM是解题的关键.3、【解析】【分析】过点E作EF⊥AD于点F,先证明CG=AG,再利用勾股定理列方程,求出AG的值,结合三角形的面积法和勾股定理,即可求解.【详解】解:如图所示:过点E作EF⊥AD于点F,有折叠的性质可知:∠ACB=∠ACE,∵AD∥BC,∴∠ACB=∠CAD,∴∠CAD=∠ACE,∴CG=AG,设CG=x,则DG=8-x,∵在中,,∴x=5,∴AG=5,在中,EG=,EF⊥AD,∠AEG=90°,∴,∵在中,,、∴DF=8-=,∴在中,,故答案是:.【点睛】本题主要考查矩形的性质,折叠的性质,勾股定理,等腰三角形的判定定理,添加辅助线构造直角三角形,是解题的关键.4、14【解析】【分析】过点作的垂线,交延长线于点,先根据正方形的性质、三角形全等的判定定理证出,根据全等三角形的性质可得,再根据三角形全等的判定定理证出,根据全等三角形的性质即可得出答案.【详解】解:如图,过点作的垂线,交延长线于点,四边形是正方形,,,,,,在和中,,,,,,又,,在和中,,,,故答案为:14.【点睛】本题考查了正方形的性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造全等三角形是解题关键.5、【解析】【分析】利用正方形ABCD的及勾股定理,求出的长,再根据勾股定理求出和的长,找出规律,即可得出正方形的边长.【详解】解:∵A,B,C,D是正方形各边的中点∴,∵正方形ABCD的边长为,即AB=,∴,解得:,∴==2,同理==2,==4…,∴,∴=,∴的边长为故答案为:.【点睛】本题考查了正方形性质、勾股定理的应用,解此题的关键是能根据计算结果得出规律,本题具有一定的代表性,是一道比较好的题目.三、解答题1、【分析】根据平行四边形的性质可得,,勾股定理求得,,进而求得【详解】解:四边形是平行四边形AB⊥AC,在中,在中,【点睛】本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质是解题的关键.2、(1)MN=AM+CN;(2)MN=AM+CN,理由见解析;(3)MN=CN-AM,理由见解析【分析】(1)把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,可得到点M'、C、N三点共线,再由∠MBN=45°,可得∠M'BN=∠MBN,从而证得△NBM≌△NBM',即可求解;(2)把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,由∠A+∠C=180°,可得点M'、C、N三点共线,再由∠MBN=∠ABC,可得到∠M'BN=∠MBN,从而证得△NBM≌△NBM',即可求解;(3)在NC上截取CM'=AM,连接BM',由∠ABC+∠ADC=180°,可得∠BAM=∠C,再由AB=BC,可证得△ABM≌△CBM',从而得到AM=CM',BM=BM',∠ABM=∠CBM',进而得到∠MAM'=∠ABC,再由∠MBN=∠ABC,可得∠MBN=∠M'BN,从而得到△NBM≌△NBM',即可求解.【详解】解:(1)如图,把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,在正方形ABCD中,∠A=∠BCD=∠ABC=90°,AB=BC,∴∠BCM'+∠BCD=180°,∴点M'、C、N三点共线,∵∠MBN=45°,∴∠ABM+∠CBN=45°,∴∠M'BN=∠M'BC+∠CBN=∠ABM+∠CBN=45°,即∠M'BN=∠MBN,∵BN=BN,∴△NBM≌△NBM',∴MN=M'N,∵M'N=M'C+CN,∴MN=M'C+CN=AM+CN;(2)MN=AM+CN;理由如下:如图,把△ABM绕点B顺时针旋转使AB边与BC边重合,则AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,∵∠A+∠C=180°,∴∠BCM'+∠BCD=180°,∴点M'、C、N三点共线,∵∠MBN=∠ABC,∴∠ABM+∠CBN=∠ABC=∠MBN,∴∠CBN+∠M'BC=∠MBN,即∠M'BN=∠MBN,∵BN=BN,∴△NBM≌△NBM',∴MN=M'N,∵M'N=M'C+CN,∴MN=M'C+CN=AM+CN;(3)MN=CN-AM,理由如下:如图,在NC上截取CM'=AM,连接BM',∵在四边形ABCD中,∠ABC+∠ADC=180°,∴∠C+∠BAD=180°,∵∠BAM+∠BAD=180°,∴∠BAM=∠C,∵AB=BC,∴△ABM≌△CBM',∴AM=CM',BM=BM',∠ABM=∠CBM',∴∠MAM'=∠ABC,∵∠MBN=∠ABC,∴∠MBN=∠MAM'=∠M'BN,∵BN=BN,∴△NBM≌△NBM',∴MN=M'N,∵M'N=CN-CM',∴MN=CN-AM.故答案是:MN=CN-AM.【点睛】本题主要考查了正方形的性质,全等三角形的性质和判定,图形的旋转,根据题意做适当辅助线,得到全等三角形是解题的关键.3、(1),证明见解析;(2)见解析【分析】(1)由正方形的性质可得OF=OE,OF⊥AC,OE⊥BC,由Rt△AOF≌Rt△AOD,可以推出OE=OD=OE,再由可得,由此即可得到答案;(2)根据(1)和题目已知可得,由此利用完全平方公式和平方差公式求解即可.【详解】解:(1)如图所示,连接OC∵四边形OECF是正方形,∴OF=OE,OF⊥AC,OE⊥BC,∵Rt△AOF≌Rt△AOD,∴OF=O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年承德市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)带答案详解
- 2026年邢台市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及答案详解(典优)
- 清远市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及完整答案详解1套
- 2026年莆田市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(精练)
- 泉州市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(轻巧夺冠)
- 2026年深圳市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及答案详解一套
- 常德市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解(能力提升)
- 商洛市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及答案详解(基础+提升)
- 2026年承德市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解(完整版)
- 绥化市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)参考答案详解
- 2024年药品监管业务知识技能竞赛考试题库(含答案)
- 运动损伤预防的数字化分析与训练
- 线上离婚协议书
- 基于大数据的智能化车间运营分析与决策机制研究
- 《机械加工基础知识》课件
- 护士人员礼仪与行为规范
- 2025年浙江中国移动通信集团浙江有限公司招聘笔试参考题库附带答案详解
- 输血病例书写规范
- 物料质保协议书范本
- 2024年系统分析师考试试题及答案全面解析
- 冰雪文化在推动冰雪经济发展中的重要作用
评论
0/150
提交评论