河南省项城市中考数学真题分类(一次函数)汇编定向练习试卷(解析版)_第1页
河南省项城市中考数学真题分类(一次函数)汇编定向练习试卷(解析版)_第2页
河南省项城市中考数学真题分类(一次函数)汇编定向练习试卷(解析版)_第3页
河南省项城市中考数学真题分类(一次函数)汇编定向练习试卷(解析版)_第4页
河南省项城市中考数学真题分类(一次函数)汇编定向练习试卷(解析版)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省项城市中考数学真题分类(一次函数)汇编定向练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限 B.与x轴交于(1,0)C.与y轴交于(0,1) D.y随x的增大而减小2、已知为第四象限内的点,则一次函数的图象大致是(

)A. B.C. D.3、点A(﹣1,y1)和点B(﹣4,y2)都在直线y=﹣2x上,则y1与y2的大小关系为(

)A.y1>y2 B.y1<y2 C.y1=y2 D.y1≥y24、一次函数的图象不经过下列哪个象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限5、一次函数的图象经过点P(,3),且与x轴、y轴分别交于点A、B,则的面积是()A. B. C.4 D.86、将直线向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为(

)A. B. C. D.7、为积极响应振兴乡村的号召,某工作队步行前往某乡村开展入户调查.队员们先匀速步行一段时间,途中休息几分钟后加快了步行速度,最终按原计划时间到达目的地.设行进时间为t(单位:),行进的路程为x(单位:m),则能近似刻画x与t之间的函数关系的大致图象是(

)A. B.C. D.8、为了加强爱国主义教育,每周一学校都要举行庄严的升旗仪式,同学们凝视着冉冉上升的国旗,下列哪个函数图象能近似地刻画上升的国旗离旗杆顶端的距离与时间的关系(

)A.A B.B C.C D.D第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、的平方根是.2、方程的解是x=______,则函数在自变量x等于_______时的函数值是83、一次函数的图象与y轴的交点坐标是________.4、函数y=中,自变量x的取值范围是_____________.5、一次函数y=kx+b的图象与x轴、y轴分别交于点A(2,0),B(0,4),点C,D分别是OA,AB的中点,P是OB上一动点.当△DPC周长最小时,点P的坐标为_____.6、某商店今年6月初销售纯净水的数量如下表所示:日期1234数量(瓶)120125130135观察此表,利用所学函数知识预测今年6月7日该商店销售纯净水的数量约为________瓶.7、星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是__千米.三、解答题(7小题,每小题10分,共计70分)1、如图,自行车每节链条的长度为,交叉重叠部分的圆的直径为.()观察图形,填写下表:链条的节数/节链条的长度/()如果节链条的长度是,那么与之间的关系式是什么?()如果一辆某种型号自行车的链条(安装前)由节这样的链条组成,那么这辆自行车上的链条(安装后)总长度是多少?2、某文具店出售书包和文具盒,书包每个定价30元,文具盒每个定价5元.该店制定了两种优惠方案.方案1:买一个书包赠送一个文具盒;方案2:按总价的9折(总价的90%)付款.某班学生需购买8个书包,文具盒若干(不少于8个),如果设文具盒数为x(个),付款数为y(元).(1)分别求出两种优惠方案中y与x之间的关系式;(2)购买文具盒多少个时两种方案付款相同;购买文具盒数大于8个时,两种方案中哪一种更省钱?3、小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少,在超市逗留了多少时间;(2)小敏几点几分返回到家.4、在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓,超市离学生公寓,小琪从学生公寓出发,匀速步行了到阅览室;在阅览室停留后,匀速步行了到超市;在超市停留后,匀速骑行了返回学生公寓.给出的图象反映了这个过程中小琪离学生公寓的距离与离开学生公寓的时间之间的对应关系.请根据相关信息,解答下列问题:(1)填表:离开学生公寓的时间/585087112离学生公寓的距离/0.51.6(2)填空:①阅览室到超市的距离为___________;②小琪从超市返回学生公寓的速度为___________;③当小琪离学生公寓的距离为时,他离开学生公寓的时间为___________.(3)当时,请直接写出y关于x的函数解析式.5、一列快车和一列慢车同时从甲地出发,分别以速度、(单位:,且)匀速驶向乙地.快车到达乙地后停留了,沿原路仍以速度匀速返回甲地,设慢车行驶的时间为,两车之间的距离为,图中的折线表示从慢车出发至慢车到达乙地的过程中,与之间的函数关系.(1)甲乙两地相距______;点实际意义:______;(2)求,的值;(3)慢车出发多长时间后,两车相距?6、由于全球汽车芯片短缺汽车生产成本增加,某汽车生产厂商计划提高汽车出厂价格,据市场反馈,某型号汽车出厂价格为8万元/辆时,其月销量为2000辆,且出厂价格每提高1万元/辆,月销量将减少300辆,设该型号汽车每辆出厂价格为x万元(x>8)时,其月销量为y辆.(1)求y与x之间的函数关系式;(2)若汽车生产商计划该型号汽车的月销量不少于1400辆,在(1)的基础上,请根据函数中y的值随着x值的变化而变化的特点,求该型号汽车的出厂价格最多应定为每辆多少万元?7、疫苗接种,利国利民.甲、乙两地分别对本地各40万人接种新冠疫苗.甲地在前期完成5万人接种后,甲、乙两地同时以相同速度接种,甲地经过天后接种人数达到25万人,由于情况变化,接种速度放缓,结果100天完成接种任务,乙地80天完成接种任务,在某段时间内,甲、乙两地的接种人数(万人)与各自接种时间(天)之间的关系如图所示.(1)直接写出乙地每天接种的人数及的值;(2)当甲地接种速度放缓后,求关于的函数解析式,并写出自变量的取值范围;(3)当乙地完成接种任务时,求甲地未接种疫苗的人数.-参考答案-一、单选题1、C【解析】【分析】利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【详解】将直线y=x﹣1向上平移2个单位长度后得到直线y=x﹣1+2=x+1,A、直线y=x+1经过第一、二、三象限,错误;B、直线y=x+1与x轴交于(﹣1,0),错误;C、直线y=x+1与y轴交于(0,1),正确;D、直线y=x+1,y随x的增大而增大,错误,故选C.【考点】本题主要考查了一次函数图象与几何变换,正确把握变换规律以及一次函数的图象和性质是解题的关键.2、A【解析】【分析】根据为第四象限内的点,可得,从而得到,进而得到一次函数的图象经过第一、二、三象限,即可求解.【详解】解:∵为第四象限内的点,∴,∴,∴一次函数的图象经过第一、二、三象限.故选:A【考点】本题主要考查了坐标与图形,一次函数的图象,熟练掌握一次函数,当时,一次函数图象经过第一、二、三象限;当时,一次函数图象经过第一、三、四象限;当时,一次函数图象经过第一、二、四象限;当时,一次函数图象经过第二、三、四象限是解题的关键.3、B【解析】【分析】由直线y=-2x的解析式判断k=−2<0,y随x的增大而减小,再结合点的坐标特征解题即可.【详解】解:∵一次函数中一次项系数k=-2<0,∴y随x的增大而减小,∵-4<-1,∴y1<y2.故选B.【考点】本题考查一次函数的增减性,是重要考点,难度较易,掌握相关知识是解题关键.4、C【解析】【分析】先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【详解】∵解析式中,,,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.【考点】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴,当k>0时,函数图象经过第一、三象限,当b<0时,函数图象与y轴相交于负半轴.熟练掌握是解决问题关键.5、B【解析】【详解】解:∵一次函数y=﹣2x+m的图象经过点P(﹣2,3),∴3=4+m,解得m=﹣1,∴y=﹣2x﹣1,∵当x=0时,y=﹣1,∴与y轴交点B(0,﹣1),∵当y=0时,x=﹣,∴与x轴交点A(﹣,0),∴△AOB的面积:×1×=.故选B.点睛:此题主要考查了一次函数图象上点坐标特征,关键是掌握与x轴相交时y=0,与y轴相交时,x=0.6、A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.【考点】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.7、C【解析】【分析】根据休息后的速度比休息前的速度快,路程变化快一点,图象相对陡一点,休息时路程不变,进而可作出判断.【详解】解:根据题意,休息后的速度比休息前的速度快,路程变化快一点,图象相对陡一点,休息时路程不变,四个选项中只有C选项符合题意,故选:C.【考点】本题考查了函数的图象,理解题意,找到休息前后路程的的变化快慢是解答的关键.8、A【解析】【详解】试题分析:设旗杆高h,国旗上升的速度为v,国旗离旗杆顶端的距离为S,根据题意,得S=h﹣vt,∵h、v是常数,∴S是t的一次函数,∵S=﹣vt+h,﹣v<0,∴S随v的增大而减小.故选A.考点:函数的图象.二、填空题1、±2【解析】【详解】解:∵∴的平方根是±2.故答案为±2.2、

2

2【解析】【分析】解一元一次方程求解,然后结合数形结合思想求自变量的值.【详解】解:解方程得到:,函数的函数值是8.即,即函数在自变量等于2时的函数值是8.故答案为:2;2.【考点】本题主要考查了一元一次方程与一次函数的关系.任何一元一次方程都可以转化为(,为常数,≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线确定它与轴的交点的横坐标的值.3、【解析】【分析】根据y轴上点的坐标特征:横坐标为0,将x=0代入一次函数解析式中即可求出结论.【详解】解:根据题意,令,解得,所以一次函数的图象与y轴的交点坐标是.故答案为:.【考点】此题考查的是求一次函数的图象与y轴的交点坐标,掌握y轴上点的坐标特征是解决此题的关键.4、x≥-3且x≠1【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,可知:x+3≥且x-1≠0,解得自变量x的取值范围.【详解】解:根据题意得:x+3≥0且x-1≠0,解得:x≥-3且x≠1.故答案为:x≥-3且x≠1【考点】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5、(0,1)【解析】【分析】作C点关于y轴的对称点C′,连接DC′交y轴于点P,此时PD+PC的值最小,根据中点坐标公式求出D、C点的坐标,再求出直线DC′的解析式,再求出与y轴的交点坐标即可.【详解】解:如图:作C点关于y轴的对称点C′,连接DC′交y轴于点P,此时PD+PC的值最小,∵DC长为定值,∴当PD+PC的值最小时,△DPC周长最小,∵A(2,0),B(0,4),点C,D分别是OA,AB的中点,∴C(1,0),D(1,2),∴C′(−1,0),设直线DC′为:y=kx+b,把C′(−1,0),D(1,2),代入得,,解得:,∴y=x+1,令x=0,∴y=1,∴P(0,1),故答案为:(0,1).【考点】本题考查了一次函数图象上点的坐标特征、一次函数的图象、最短路线问题,熟练掌握这三个知识点的综合应用,最短路线问题中P点的确定及求出直线DC′的解析式是解题关键.6、150【解析】【分析】观察可以发现这是一个一次函数模型,设y=kx+b,利用待定系数法即可解决问题.【详解】这是一个一次函数模型,设y=kx+b,则有,解得,,当时,,∴预测今年6月7日该商店销售纯净水的数量约为150瓶,故答案为:150【考点】本题考查一次函数的应用,涉及了待定系数法,求函数值等知识,通过观察发现这是一个一次函数模型问题是解题的关键.7、1.5##【解析】【分析】首先设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b,然后再把(40,2)(60,0)代入可得函数解析式,再把t=45代入即可.【详解】解:设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b.∵图象经过(40,2)(60,0),∴,解得:,∴y与t的函数关系式为y=﹣,当t=45时,y=﹣×45+6=1.5.故答案为1.5.【考点】本题主要考查了一次函数的应用,关键是正确理解题意,掌握待定系数法求出函数解析式.三、解答题1、();;;();()102cm【解析】【分析】(1)首先根据题意并结合1节链条的图形可得每节链条两个圆之间的距离为(2.5-0.8×2)cm;接下来再结合图形可得到2节链条的长度为2.5+0.9+0.8,按此规律,自己写出3节链条、4节链条的长度,再进行填表即可;(2)结合(1)中各节链条长度的表达式,则不难得到y与x之间的关系式了;(3)将x=60代入(2)中的关系式中,可求得y值,此时,注意:自行车上的链条为环形,在展直的基础上还要缩短0.8cm.【详解】解:(1)每节链条两个圆之间的距离为:2.5-0.8×2=0.9,观察图形可得,2节链条的长度为2.5+0.9+0.8=4.2;3节链条的长度为4.2+0.9+0.8=5.9;4节链条的长度为5.9+0.9+0.8=7.6;故答案是:4.2,5.9,7.6.(2)1节链条、2节链条、3节链条、4节链条的长度分别可表示为:2.5=0.8+1.7×1,4.2=0.8+1.7×2,5.9=0.8+1.7×3,7.6=0.8+1.7×4=7.6,故y与x之间的关系为:y=1.7x+0.8;(3)当x=60时,y=1.7×60+0.8=102.8,因为自行车上的链条为环形,在展直的基础上还要缩短0.8cm,故自行车60节链条的长度为102.8-0.8=102(cm),所以这辆自行车上的链条(安装后)总长度是102cm.【考点】本题主要考查了函数关系式,解题的关键是根据题意得出n节链条的长度与每节长度之间的关系.2、(1)方案1:,方案2:;(2)32个;当文具盒数量多于32个时,方案2省钱,当文具盒数量多于8个而少于32个时,方案1省钱.【解析】【分析】(1)对方案1,根据付款数=8个书包的价钱+(x-8)个文具盒的价钱列式解答即可;对方案2:根据付款数=(8个书包的价钱+x个文具盒的价钱)×90%列式解答即可;(2)先计算出两种付款方案相同时文具盒的个数,再分情况讨论.【详解】解:(1)方案1:;方案2:;(2)若两种方案付款相同,则有,解得.当文具盒数量多于32个时,方案2省钱,当文具盒数量多于8个而少于32个时,方案1省钱.【考点】本题考查的是用关系式表示变量之间的关系、一元一次方程的解法和代数式求值,正确理解题意、弄清题目中的数量关系、全面分类是解题的关键.3、(1)300米/分,30分;(2)8:55.【解析】【分析】(1)根据观察横坐标,可得去超市的时间,根据观察纵坐标,可得去超市的路程,根据路程与时间的关系,可得答案;在超市逗留的时间即路程不变化所对应的时间段;(2)求出返回家时的函数解析式,当y=0时,求出x的值,即可解答.【详解】解:(1)速度为:3000÷10=300(米/分)逗留的时间为:40-10=30(分钟)(2)设返回家时,y与x的函数解析式为y=kx+b,把(40,3000),(45,2000)代入得:解得:∴函数解析式为:y=-200x+11000当y=0时,x=55

∴返回到家的时间为8:55.【考点】本题考查了一次函数的应用,观察函数图象获取信息是解题关键.4、(1)0.8,1.2,2(2)①0.8;②0.25;③10或116(3)当时,;当时,;当时,【解析】【分析】(1)根据题意和函数图象,可以将表格补充完整;(2)根据函数图象中的数据,可以将各个小题中的空补充完整;(3)根据(2)中的结果和函数图象中的数据,可以写出当时,y关于x的函数解析式.(1)由图象可得,在前12分钟的速度为:1.2÷12=0.1km/min,故当x=8时,离学生公寓的距离为8×0.1=0.8;在时,离学生公寓的距离不变,都是1.2km故当x=50时,距离不变,都是1.2km;在时,离学生公寓的距离不变,都是2km,所以,当x=112时,离学生公寓的距离为2km故填表为:离开学生公寓的时间/585087112离学生公寓的距离/0.50.81.21.62(2)①阅览室到超市的距离为2-1.2=0.8;②小琪从超市返回学生公寓的速度为:2÷(120-112)=0.25;③分两种情形:当小琪离开学生公寓,与学生公寓的距离为时,他离开学生公寓的时间为:1÷0.1=10;当小琪返回与学生公寓的距离为时,他离开学生公寓的时间为:112+(2-1)÷{2÷(120-112)}=112+4=116min;故答案为:①0.8;②0.25;③10或116(3)当时,设直线解析式为y=kx,把(12,1.2)代入得,12k=1.2,解得,k=0.1∴;当时,;当时,设直线解析式为,把(82,1.2),(92,2)代入得,解得,∴,由上可得,当时,y关于x的函数解析式为.【考点】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.5、(1)900km;快车到达乙地(2)a=8,b=14;(3)h、7h、h【解析】【分析】(1)由图象即可得到结论;(2)根据图象,得到慢车的速度为=60(km/h),快车的速度为:900÷=150(km/h),于是得到结论;(3)根据每段的函数解析式即可得到结论.(1)由图象知,甲、乙两地之间的距离为900km;点实际意义:快车到达乙地;(2)根据图象,得慢车的速度为=60(km/h),快车的速度为:900÷=150(km/h),∴a==8,b==14;(3)由题意得A(=6,540),B(8,540-60×2=420),C(=10,0),D(14,14×60=840),分别代入y=kx+b,可得线段OA所表示的y与x之间的函数表达式为y3=90x(0≤x<6);线段AB所表示的y与x之间的函数表达式为y1=-60x+900(6≤x<8)线段CD所表示的y与x之间的函数表达式为y2=210x-2100(10≤x<1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论