考点解析贵州省都匀市中考数学真题分类(实数)汇编专项训练试题(含答案解析)_第1页
考点解析贵州省都匀市中考数学真题分类(实数)汇编专项训练试题(含答案解析)_第2页
考点解析贵州省都匀市中考数学真题分类(实数)汇编专项训练试题(含答案解析)_第3页
考点解析贵州省都匀市中考数学真题分类(实数)汇编专项训练试题(含答案解析)_第4页
考点解析贵州省都匀市中考数学真题分类(实数)汇编专项训练试题(含答案解析)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省都匀市中考数学真题分类(实数)汇编专项训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、估计的值在(

)A.3和4之间 B.4和5之间 C.5和6之间 D.6和7之间2、下列二次根式中,是最简二次根式的是A. B. C. D.3、下列各式中正确的是(

)A. B. C. D.4、对于数字-2+,下列说法中正确的是(

)A.它不能用数轴上的点表示出来 B.它比0小C.它是一个无理数 D.它的相反数为2+5、等于(

)A.7 B. C.1 D.6、计算=(

)A. B. C. D.7、实数a,b在数轴上对应的点的位置如图所示,下列结论正确的是()A.a>b B.﹣a<b C.a>﹣b D.﹣a>b8、下列二次根式是最简二次根式的是()A. B. C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、-64的立方根是.2、化简_______.3、与最简二次根式5是同类二次根式,则a=_____.4、25的算数平方根是______,的相反数为______.5、如图,数轴上点A表示的数为a,化简:a_____.6、规定一种新运算“*”:a*b=a-b,则方程x*2=1*x的解为________.7、如果的平方根是,则_________三、解答题(7小题,每小题10分,共计70分)1、观察下列两个等式:,给出定义如下:我们称使等式成立的一对有理数,为“同心有理数对”,记为,如:数对,,都是“同心有理数对”.(1)数对,是“同心有理数对”的是;(2)若是“同心有理数对”,求的值;(3)若是“同心有理数对”,则“同心有理数对”(填“是”或“不是”).2、已知:实数a,b在数轴上的位置如图所示,化简:+﹣|a﹣b|.3、若和互为相反数,求的值.4、计算:(1)(2)5、观察下列等式:解答下列问题:(1)写出一个无理数,使它与的积为有理数;(2)利用你观察的规律,化简;(3)计算:.6、已知a是的整数部分,b是的小数部分,|c|=,求a-b+c的值.7、计算:(1)(2)-参考答案-一、单选题1、B【解析】【分析】因为,所以在4到5之间,由此可得出答案.【详解】解:∵,∴.故选:B【考点】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.2、B【解析】【分析】根据最简二次根式的定义对各选项分析判断利用排除法求解.【详解】A、不是最简二次根式,错误,不符合题意;B、是最简二次根式,正确,符合题意;C、不是最简二次根式,错误,不符合题意;D、不是最简二次根式,错误,不符合题意,故选B.【考点】本题考查了最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.3、C【解析】【分析】根据二次根式的性质化简即可.【详解】解:A、,故本选项错误;B、,故本选项错误;C、,故本选项正确;D、|a|,故本选项错误;故选:C.【考点】此题考查了二次根式的性质,掌握基本性质是解题的关键.4、C【解析】【分析】根据数轴的意义,实数的计算,无理数的定义,相反数的定义判断即可.【详解】A.数轴上的点和实数是一一对应的,故该说法错误,不符合题意;B.,故该说法错误,不符合题意;C.是一个无理数,故该说法正确,符合题意;D.的相反数为,故该说法错误,不符合题意;故选:C.【考点】本题考查数轴的意义,实数的计算,无理数的定义,相反数的定义,熟练掌握相关计算法则是解答本题的关键.5、B【解析】【分析】根据二次根式的混合计算法则求解即可.【详解】解:,故选B.【考点】本题主要考查了二次根式的混合计算,解题的关键在于能够熟练掌握相关计算法则.6、C【解析】【分析】根据二次根式的混合运算和根式的性质即可解题.【详解】解:,故选C.【考点】本题考查了根式的运算,属于简单题,熟悉根式的性质是解题关键.7、D【解析】【分析】根据数轴即可判断a和b的符号以及绝对值的大小,根据有理数的大小比较方法进行比较即可求解.【详解】根据数轴可得:,,且,则,选项A错误;,选项B错误;,选项C错误;,选项D正确;故选:D.【考点】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.8、D【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、被开方数含分母,故A不符合题意;B、被开方数,含分母,故B不符合题意;C、被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意.故选:D.【考点】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.二、填空题1、-4【解析】【详解】解:根据立方根的意义,一个数的立方等于a,则a的立方根是这个数,可知-64的立方根为-4.故答案为-4.2、【解析】【分析】设,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】解:设,由算术平方根的非负性可得t≥0,则.故答案为:.【考点】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.3、2【解析】【分析】先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可.【详解】解:∵与最简二次根式5是同类二次根式,且=2,∴a+1=3,解得:a=2.故答案为2.【考点】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.4、

5

3【解析】【分析】根据算术平方根的定义和实数的相反数分别填空即可.【详解】∵∴25的算数平方根是5;∵∴的相反数为3;故答案为:5,3.【考点】本题考查了实数的性质,主要利用了算术平方根,立方根的定义以及相反数的定义,熟记概念与性质是解题的关键.5、2【解析】【分析】直接利用二次根式的性质以及结合数轴得出a的取值范围进而化简即可.【详解】解:由数轴可得:0<a<2,则a+=a+=a+(2﹣a)=2.故答案为:2.【考点】本题主要考查了二次根式的性质与化简,解题的关键是正确得出a的取值范围.6、【解析】【分析】根据题中的新定义化简所求方程,求出方程的解即可.【详解】根据题意得:x-×2=×1-,x=,解得:x=,故答案为x=.【考点】此题的关键是掌握新运算规则,转化成一元一次方程,再解这个一元一次方程即可.7、81【解析】【分析】根据平方根的定义即可求解.【详解】∵9的平方根为,∴=9,所以a=81【考点】此题主要考查平方根的性质,解题的关键是熟知平方根的定义.三、解答题1、(1);(2);(3)是.【解析】【分析】(1)根据:使等式成立的一对有理数,为“同心有理数对”,判断出数对,是“同心有理数对”的是哪个即可;(2)根据是“同心有理数对”,得到,求解即可;(3)根据是“同心有理数对”,得到,进行判断即可;【详解】解:(1)∵,,,∴数对,、不是“同心有理数对”;∵,,∴,∴是“同心有理数”,∴数对,是“同心有理数对”的是;(2)∵是“同心有理数对”,∴,∴.(3)是.理由:∵是“同心有理数对”,∴,∴,∴是“同心有理数对”.【考点】本题主要考查了有理数和等式的性质,准确理解计算是解题的关键.2、-2【解析】【分析】本题运用实数与数轴的对应关系确定-2<a<-1,1<b<2,且b>a,然后根据开方运算的性质和绝对值的意义化简即可求解.【详解】由数轴上点的位置关系,得-2<a<-1,1<b<2,∴a+1<0,b-1>0,a-b<0,∴=|a+1|+|b-1|-|a-b|,=-a-1+b-1+a-b,=-2【考点】本题主要考查了利用数轴比较两个数的大小和二次根式的化简,解答本题的关键是掌握绝对值的性质.3、【解析】【分析】根据两个数的立方根互为相反数得出:2a-1=3b-1,推出2a=3b,即可得出答案.【详解】∵和互为相反数,∴+=0,∴2a-1+1-3b=0,∴2a-1=3b-1,2a=3b,∴=.【考点】本题考查了立方根和相反数的概念,关键是由两个数的立方根互为相反数得出两个数互为相反数.4、(1)(2)【解析】【分析】(1)先化简二次根式,再计算加减法;(2)先根据完全平方公式及平方差公式计算乘法,再计算加减法.(1)解:原式==;(2)原式==.【考点】此题考查了二次根式的运算,正确掌握各计算法则及二次根式的化简是解题的关键.5、(1);(2);(3).【解析】【分析】(1)由平方差的运算法则,即可得到答案;(2)找出题目中的规律,把分母有理化,即可得到答案;(3)先把分母有理化,然后进行化简,即可得到答案.【详解】解:(1)∵,∴这个无理数为:;(2)==;(3)==.【考点】本题考查了二次根式的运算法则,分母有理化,平方差运算,熟练掌握运算法则,正确的发现题目中的规律是解题关键.6、4或4-2.【解析】【分析】先进行估算的范围,确定a,b的值,再代入代数式即可解答.【详解】解:∵2<<3,∴a=2,b=-2,∵|c|=,∴c=±当c=时,a-b+c=4;当c=-时,a-b+c=4-2故答案为:4或4-2.【考点】本题考查代数式的求值,涉及无理数的估算和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论