




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学下册《平行四边形》难点解析考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,在△ABC中,AC=BC=8,∠BCA=60°,直线AD⊥BC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60°得到FC,连接DF,则在点E的运动过程中,DF的最小值是()A.1 B.1.5 C.2 D.42、如图,在平面直角坐标系中,点A是x轴正半轴上的一个动点,点C是y轴正半轴上的点,于点C.已知,.点B到原点的最大距离为()A.22 B.18 C.14 D.103、如图所示,在矩形ABCD中,已知AE⊥BD于E,∠DBC=30°,BE=1cm,则AE的长为()A.3cm B.2cm C.2cm D.cm4、直角三角形的两条直角边分别为5和12,那么这个三角形的斜边上的中线长为()A.6 B.6.5 C.10 D.135、如图,矩形ABCD中,AB=3,AD=4,将矩形ABCD折叠后,A点的对应点落在CD边上,EF为折痕,A和EF交于G点,当AG+BG取最小值时,此时EF的值为()A. B.3 C.2 D.5第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、已知如图,点E,F分别在正方形的边,上,,若,,则_________.2、正方形ABCD的边长是8cm,点M在BC边上,且MC=2cm,P是正方形边上的一个动点,连接PB交AM于点N,当PB=AM时,PN的长是_____.3、如图,在▱ABCD中,点E是对角线AC上一点,过点E作AC的垂线,交边AD于点P,交边BC于点Q,连接PC、AQ,若AC=6,PQ=4,则PC+AQ的最小值为________________.4、如图,为了测量池塘两岸A,B两点之间的距离,可在AB外选一点C,连接AC和BC,再分别取AC、BC的中点D,E,连接DE并测量出DE的长,即可确定A、B之间的距离.若量得DE=15m,则A、B之间的距离为__________m5、如图,在正方形ABCD中,,E是AB的中点,P是AD上任意一点,连接PE,PC,若是等腰三角形,则AP的长可能是______.三、解答题(5小题,每小题10分,共计50分)1、如图,的对角线与相交于点O,过点B作BPAC,过点C作CPBD,与相交于点P.
(1)试判断四边形的形状,并说明理由;(2)若将改为矩形,且,其他条件不变,求四边形的面积;(3)要得到矩形,应满足的条件是_________(填上一个即可).2、如图,在Rt△ABC中,∠ACB=90°,D为AB中点,.(1)试判断四边形BDCE的形状,并证明你的结论;(2)若∠ABC=30°,AB=4,则四边形BDCE的面积为.3、如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三边长都是有理数的直角三角形;(2)在图2中,画一个以BC为斜边的直角三角形,使它们的三边长都是无理数且都不相等;(3)在图3中,画一个正方形,使它的面积是10.4、已知:如图,在四边形中,,.求证:(1)BECD;(2)四边形是矩形.5、如图,已知正方形中,点是边延长线上一点,连接,过点作,垂足为点,与交于点.(1)求证:;(2)若,,求BG的长.-参考答案-一、单选题1、C【解析】【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及∠FCD=∠ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出△FCD≌△ECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解.【详解】解:取线段AC的中点G,连接EG,如图所示.∵AC=BC=8,∠BCA=60°,∴△ABC为等边三角形,且AD为△ABC的对称轴,∴CD=CG=AB=4,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG,在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.当EG∥BC时,EG最小,∵点G为AC的中点,∴此时EG=DF=CD=BC=2.故选:C.【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.2、B【解析】【分析】首先取AC的中点E,连接BE,OE,OB,可求得OE与BE的长,然后由三角形三边关系,求得点B到原点的最大距离.【详解】解:取AC的中点E,连接BE,OE,OB,∵∠AOC=90°,AC=16,∴OE=CEAC=8,∵BC⊥AC,BC=6,∴BE10,若点O,E,B不在一条直线上,则OB<OE+BE=18.若点O,E,B在一条直线上,则OB=OE+BE=18,∴当O,E,B三点在一条直线上时,OB取得最大值,最大值为18.故选:B【点睛】此题考查了直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.3、D【解析】【分析】根据矩形和直角三角形的性质求出∠BAE=30°,再根据直角三角形的性质计算即可.【详解】解:∵四边形ABCD是矩形,∴∠BAD=90°,∠BDA=∠DBC=30°,∵AE⊥BD,∴∠DAE=60°,∴∠BAE=30°,在Rt△ABE中,∠BAE=30°,BE=1cm,∴AB=2cm,∴AE=(cm),故选:D.【点睛】本题考查了矩形的性质,含30度角的直角三角形的性质,熟记各图形的性质并准确识图是解题的关键.4、B【解析】【分析】根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【详解】解:∵直角三角形两直角边长为5和12,∴斜边=,∴此直角三角形斜边上的中线的长==6.5.故选:B.【点睛】本题主要考查勾股定理及直角三角形斜边中线定理,熟练掌握勾股定理及直角三角形斜边中线定理是解题的关键.5、A【解析】【分析】过点作于,由翻折的性质知点为的中点,则为的中位线,可知在上运动,当取最小值时,此时与重合,利用勾股定理和相似求出的长即可解决问题.【详解】解:过点作于,将矩形折叠后,点的对应点落在边上,点为的中点,为的中位线,在上运动,在上运动,当取最小值时,此时与重合,,,,,,,,,在和中,,,,,故选:A.【点睛】本题主要考查了矩形的性质,翻折的性质,全等三角形的判定与性质,勾股定理等知识,解题的关键是证明在上运动.二、填空题1、14【解析】【分析】过点作的垂线,交延长线于点,先根据正方形的性质、三角形全等的判定定理证出,根据全等三角形的性质可得,再根据三角形全等的判定定理证出,根据全等三角形的性质即可得出答案.【详解】解:如图,过点作的垂线,交延长线于点,四边形是正方形,,,,,,在和中,,,,,,又,,在和中,,,,故答案为:14.【点睛】本题考查了正方形的性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造全等三角形是解题关键.2、5cm或5.2cm【解析】【分析】当点P在BC上,AM>BP,当点P在AB上,AM>BP,当点P在CD上,如图,根据PB=AM,可证Rt△ABM≌Rt△BCP(HL),可证BP⊥AM,根据勾股定理可求AM=,根据三角形面积可求,可求PN=BP-BN;当点P在AD上,如图,可证Rt△ABM≌Rt△BAP(HL),再证AN=PN=BN=MN,根据AM=BP=10cm,可求PN=cm,【详解】解:当点P在BC上,AM>BP,当点P在AB上,AM>BP,不合题意,舍去;当点P在CD上,如图,∵PB=AM∵四边形ABCD为正方形,∴AB=BC=AD=CD=8,在Rt△ABM和Rt△BCP中,,∴Rt△ABM≌Rt△BCP(HL),∴∠MAB=∠PBC,∵∠MAB+∠AMB=90°,∴∠PBC+∠AMB=90°,∴∠BNM=180°-∠PBC-∠AMB=90°,∴BP⊥AM,∵MC=2cm,∴BM=BC-MC=8-2=6cm,∴AM=,∴,∴,∴PN=BP-BN=AM-BN=10-4.8=5.2cm,当点P在AD上,如图,在Rt△ABM和Rt△BAP中,,∴Rt△ABM≌Rt△BAP(HL),∴BM=AP,∠AMB=∠BPA,∠MAB=∠PBA,∴AN=BN,∵AD∥BC,∴∠PAN=∠NMB=∠APN,∴AN=PN=BN=MN,∵AM=BP=10cm,∴PN=cm,∴PN的长为5cm或5.2cm.故答案为5cm或5.2cm.【点睛】本题考查正方形的性质,三角形全等判定与性质,勾股定理,等腰三角形判定与性质,分类讨论思想,掌握正方形的性质,三角形全等判定与性质,勾股定理,等腰三角形判定与性质,分类讨论思想是解题关键.3、【解析】【分析】利用平行四边形的知识,将的最小值转化为的最小值,再利用勾股定理求出MC的长度,即可求解;【详解】过点A作且,连接MP,∴四边形是平行四边形,∴,将的最小值转化为的最小值,当M、P、C三点共线时,的最小,∵,,∴,在中,;故答案是:.【点睛】本题主要考查了平行线的判定与性质,勾股定理,准确计算是解题的关键.4、30【解析】【分析】根据三角形中位线的性质解答即可.【详解】解:∵点D,E分别是AC,BC的中点,∴DE是△ABC的中位线,∴AB=2DE=30m.故填30.【点睛】本题主要考查的是三角形中位线定理,掌握三角形的中位线平行于第三边且等于第三边的一半是解答本题的关键.5、或或【解析】【分析】分三种情况:当时,当时,当时,利用等腰三角形的性质和正方形的性质进行求解即可.【详解】解:如图1,当时,∵四边形ABCD是正方形,∴∠B=∠D=90°,BC=DC,∴,∴则,∵E是AB的中点,∴∴;如图2.当点P与点D重合时,∵四边形ABCD是正方形,∴AD=BC,∠A=∠B=90°,∵E是AB的中点,∴AE=BE,∴△ADE≌△BCE(SAS),∴即PE=CE,是等腰三角形.∴;如图3.当时,设,则,在直角△PDC中,,在直角△AEP中,,则.解得,即.综上所述,AP的长可能是1或2或.故答案为:1或2或.【点睛】本题主要考查了等腰三角形的性质,正方形的性质,全等三角形的性质与判定,勾股定理,解题的关键在于能够熟练掌握等腰三角形的性质和正方形的性质.三、解答题1、(1)平行四边形,理由见解析;(2)四边形的面积为24;(3)AB=BC或AC⊥BD等(答案不唯一)【分析】(1)利用平行四边形的判定:两组对边分别平行的四边形是平行四边形,即可证明.(2)利用矩形的性质,得到对角线互相平分,进而证明四边形是菱形,分别求出菱形的对角线长度,利用对角线乘积的一半,求解面积即可.(3)添加的条件只要可以证明即可得到矩形.【详解】解:(1)四边形BPCO是平行四边形,
∵BP∥AC,CP∥BD,∴四边形BPCO是平行四边形.(2)连接OP.∵四边形ABCD是矩形,∴OB=BD,OC=AC,AC=BD,∠ABC=90°,∴OB=OC.又四边形BPCO是平行四边形,∴□BPCO是菱形.
∴OP⊥BC.又∵AB⊥BC,∴OP∥AB.又∵AC∥BP,四边形是平行四边形,∴OP=AB=6.∴S菱形BPCO=.(3)AB=BC或AC⊥BD等(答案不唯一).当AB=BC时,为菱形,此时有:,利用含有的平行四边形为矩形,即可得到矩形,当AC⊥BD时,利用含有的平行四边形为矩形,即可得到矩形.【点睛】本题主要是考查了平行四边形、矩形和菱形的判定和性质,熟练掌握特殊四边形的判定和性质,是求解该类问题的关键.2、(1)四边形是菱形,证明见解析;(2)【分析】(1)先证明四边形是平行四边形,再利用直角三角形斜边上的中线等于斜边的一半,证明从而可得结论;(2)先求解再求解的面积,再利用菱形的性质可得菱形的面积.【详解】证明:(1)四边形是菱形,理由如下:,四边形是平行四边形,∠ACB=90°,D为AB中点,四边形是菱形.(2)∠ABC=30°,AB=4,∠ACB=90°,D为AB中点,四边形是菱形,故答案为:【点睛】本题考查的是平行四边形的判定,菱形的判定与性质,直角三角形斜边上的中线的性质,含的直角三角形的性质,勾股定理的应用,掌握“有一组邻边相等的平行四边形是菱形”是解本题的关键.3、(1)见解析;(2)见解析;(3)见解析【分析】(1)如图,AB=4,BC=3,,利用勾股定理逆定理即可得到△ABC是直角三角形;(2)如图,,,利用勾股定理逆定理即可得到△ABC是直角三角形;(3)如图,,则,∠ABC=90°,即可得到四边形ABCD是正方形,.【详解】解:(1)如图所示,AB=4,BC=3,,∴,∴△ABC是直角三角形;
(2)如图所示,,∴,∴△ABC是直角三角形;
(3)如图所示,,,∴,∴∠ABC=90°,∴四边形ABCD是正方形,∴.
【点睛】本题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 102职业院校教师试题库应用能力测评研究
- 水洗合同(标准版)
- 殡仪馆骨灰盒供货服务项目招标文件
- 2024年山东临沂河东农业发展集团有限公司及权属公司招聘真题
- 上海奉贤区社区工作者招聘考试真题2024
- 2025年湖南中烟考试真题
- 2025年房地产开发与管理考试试题及答案
- 注册环保工程师考试模拟题库及答案:(大气污染防治专业案例)(2025年龙岩)
- 2025年跨境电商跨境电商平台运营实战案例试卷及答案
- 考点攻克人教版八年级上册物理物态变化《汽化和液化》专项练习试卷(含答案详解)
- 【课件】Unit+5+Using+Language+听说课课件人教版(2019)选择性必修第四册
- 现金动态收支预测表
- 4-三氟甲基烟酸及其衍生物的合成研究的开题报告
- GB/T 4339-2008金属材料热膨胀特征参数的测定
- 六西格玛改善案例课件
- 标准法兰、阀门螺栓对照表
- 《艺术概论》考试复习题库(附答案)
- Soreha-Biodex-S4-多关节等速肌力测试训练系统课件
- 派车单(标准样本)
- 混凝土膨胀剂检试验报告
- 村卫生室基本公共卫生服务项目绩效考核指标明细表格模板(参照省级标准)
评论
0/150
提交评论