解析卷人教版8年级数学上册《轴对称》同步训练试题(解析版)_第1页
解析卷人教版8年级数学上册《轴对称》同步训练试题(解析版)_第2页
解析卷人教版8年级数学上册《轴对称》同步训练试题(解析版)_第3页
解析卷人教版8年级数学上册《轴对称》同步训练试题(解析版)_第4页
解析卷人教版8年级数学上册《轴对称》同步训练试题(解析版)_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学上册《轴对称》同步训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把牛牵到河边饮水再回家,最短距离是()A.750米 B.1000米 C.1500米 D.2000米2、如图,△ABC是边长为4的等边三角形,点P在AB上,过点P作PE⊥AC,垂足为E,延长BC至点Q,使CQ=PA,连接PQ交AC于点D,则DE的长为()A.1 B.1.8 C.2 D.2.53、如图,在平面直角坐标系中,△ABC位于第二象限,点B的坐标是(﹣5,2),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于于x轴对称的△A2B2C2,则点B的对应点B2的坐标是()A.(﹣3,2) B.(2,﹣3) C.(1,2) D.(﹣1,﹣2)4、下列标志图形属于轴对称图形的是()A. B.C. D.5、如图,在△ABC中,AD是BC边上的高,∠BAF=∠CAG=90°,AB=AF,AC=AG,连接FG,交DA的延长线于点E,连接BG,CF,则下列结论:①BG=CF;②BG⊥CF;③∠EAF=∠ABC;④EF=EG,其中正确的有(

)A.①②③ B.①②④ C.①③④ D.①②③④第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、等腰三角形的顶角与其一个底角的度数的比值称为这个等腰三角形的“特征值”﹒若等腰中,,则它的特征值_________________.2、如图,在中,,点,都在边上,,若,则的长为_______.3、如图,已知AD是△ABC的中线,E是AC上的一点,BE交AD于F,AC=BF,∠DAC=24°,∠EBC=32°,则∠ACB=_____.4、如图,在△ABC中,∠ACB的平分线交AB于点D,

DE⊥AC于点E,F为BC上一点,若DF=AD,△ACD与△CDF的面积分别为10和4,则△AED的面积为______5、如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD=_________.三、解答题(5小题,每小题10分,共计50分)1、如图,在和中,,,.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的绕点A顺时针旋转,如图②,线段BD,CE有怎样的数量关系和位置关系?请说明理由.(3)拓展应用:已知等边和等边如图③所示,求线段BD的延长线和线段CE所夹锐角的度数.2、在中,BE,CD为的角平分线,BE,CD交于点F.(1)求证:;(2)已知.①如图1,若,,求CE的长;②如图2,若,求的大小.3、如图,在中,,的垂直平分线交于,交于.(1)若,则的度数是;(2)连接,若,的周长是.①求的长;②在直线上是否存在点,使由,,构成的的周长值最小?若存在,标出点的位置并求的周长最小值;若不存在,说明理由.4、如图,中,,,.(1)用直尺和圆规作的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交于点,求的长.5、如图,在中,,;点在上,.连接并延长交于.(1)求证:;(2)求证:;(3)若,与有什么数量关系?请说明理由.-参考答案-一、单选题1、B【解析】【详解】解:作A的对称点,连接B交CD于P,,∴AP+PB=,此时值最小,在中,,,,∵点A到河岸CD的中点的距离为500米,∴B=AP+PB=1000米2、C【解析】【分析】过作的平行线交于,通过证明≌,得,再由是等边三角形,即可得出.【详解】解:过作的平行线交于,,是等边三角形,,,是等边三角形,,∵CQ=PA,∴在中和中,,≌,,于,是等边三角形,,,,,,故选:C.【考点】本题主要考查了等边三角形的判定与性质,全等三角形的判定与性质,作辅助线构造全等三角形是解题的关键.3、D【解析】【分析】首先利用平移的性质得到△A1B1C1中点B的对应点B1坐标,进而利用关于x轴对称点的性质得到△A2B2C2中B2的坐标,即可得出答案.【详解】解:把△ABC向右平移4个单位长度得到△A1B1C1,此时点B(-5,2)的对应点B1坐标为(-1,2),则与△A1B1C1关于于x轴对称的△A2B2C2中B2的坐标为(-1,-2),故选D.【考点】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.4、B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选:B.【考点】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5、D【解析】【分析】证得△CAF≌△GAB(SAS),从而推得①正确;利用△CAF≌△GAB及三角形内角和与对顶角,可判断②正确;证明△AFM≌△BAD(AAS),得出FM=AD,∠FAM=∠ABD,则③正确,同理△ANG≌△CDA,得出NG=AD,则FM=NG,证明△FME≌△GNE(AAS).可得出结论④正确.【详解】解:∵∠BAF=∠CAG=90°,∴∠BAF+∠BAC=∠CAG+∠BAC,即∠CAF=∠GAB,又∵AB=AF=AC=AG,∴△CAF≌△GAB(SAS),∴BG=CF,故①正确;∵△FAC≌△BAG,∴∠FCA=∠BGA,又∵BC与AG所交的对顶角相等,∴BG与FC所交角等于∠GAC,即等于90°,∴BG⊥CF,故②正确;过点F作FM⊥AE于点M,过点G作GN⊥AE交AE的延长线于点N,∵∠FMA=∠FAB=∠ADB=90°,∴∠FAM+∠BAD=90°,∠FAM+∠AFM=90°,∴∠BAD=∠AFM,又∵AF=AB,∴△AFM≌△BAD(AAS),∴FM=AD,∠FAM=∠ABD,故③正确,同理△ANG≌△CDA,∴NG=AD,∴FM=NG,∵FM⊥AE,NG⊥AE,∴∠FME=∠ENG=90°,∵∠AEF=∠NEG,∴△FME≌△GNE(AAS).∴EF=EG.故④正确.故选:D.【考点】本题综合考查了全等三角形的判定与性质及等腰三角形的三线合一性质与互余、对顶角,三角形内角和等几何基础知识.熟练掌握全等三角形的判定与性质是解题的关键.二、填空题1、或【解析】【分析】分∠A为顶角及∠A为底角两种情况考虑,当∠A为顶角时,利用三角形内角和定理可求出底角的度数,结合“特征值”的定义即可求出特征值k的值;当∠A为底角时,利用三角形内角和定理可求出顶角的度数,结合“特征值”的定义即可求出特征值k的值.【详解】当为顶角时,则底角度数为,则;当为底角时,则顶角度数为,;故答案为:或.【考点】本题考查了等腰三角形的性质及三角形内角和定理,分∠A为顶角及∠A为底角两种情况求出“特征值”k是解题的关键.2、9.【解析】【分析】根据等腰三角形的性质及全等三角形的判定与性质即可求解.【详解】因为△ABC是等腰三角形,所以有AB=AC,∠BAD=∠CAE,∠ABD=∠ACE,所以△ABD△ACE(ASA),所以BD=EC,EC=9.【考点】此题主要考查等腰三角形的性质,解题的关键是熟知全等三角形的判定与性质.3、100°##100度【解析】【分析】延长AD到M,使得DM=AD,连接BM,证△BDM≌△CDA(SAS),得得到BM=AC=BF,∠M=∠DAC=24°,∠C=∠DBM,再证△BFM是等腰三角形,求出∠MBF的度数,即可解决问题.【详解】解:如图,延长AD到M,使得DM=AD,连接BM,在△BDM和△CDA中,,∴△BDM≌△CDA(SAS),∴BM=AC=BF,∠M=∠DAC=24°,∠C=∠DBM,∵BF=AC,∴BF=BM,∴∠M=∠BFM=24°,∴∠MBF=180°﹣∠M﹣∠BFM=132°,∵∠EBC=32°,∴∠DBM=∠MBF﹣∠EBC=100°,∴∠C=∠DBM=100°,故答案为:100°.【考点】本题考查全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.4、3【解析】【分析】如图(见解析),过点D作,根据角平分线的性质可得,再利用三角形全等的判定定理得出,从而有,最后根据三角形面积的和差即可得出答案.【详解】如图,过点D作平分,又则解得故答案为:3.【考点】本题考查了角平分线的性质、直角三角形全等的判定定理等知识点,通过作辅助线,构造两个全等的三角形是解题关键.5、30°【解析】【分析】根据等腰三角形的三线合一的性质和等边三角形三个内角相等的性质填空.【详解】∵△ABC是等边三角形,∴又点D是边BC的中点,∴故答案是:30°.【考点】考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.三、解答题1、(1),见解析;(2),见解析;(3)【解析】【分析】(1)延长BD交CE于F,易证△EAC≌△DAB,可得BD=CE,∠ABD=∠ACE,根据∠AEC+∠ACE=90°,可得∠ABD+∠AEC=90°,即可解题;(2)延长BD交CE于F,易证∠BAD=∠EAC,即可证明△EAC≌△DAB,可得BD=CE,∠ABD=∠ACE,根据∠ABC+∠ACB=90°,可以求得∠CBF+∠BCF=90°,即可解题.(3)直线BD与直线EC的夹角为60°.如图③中,延长BD交EC于F.证明,可得结论.(1)延长BD交CE于F,在△EAC和△DAB中,,∴,∴BD=CE,∠ABD=∠ACE,∵∠AEC+∠ACE=90°,∴∠ABD+∠AEC=90°,∴∠BFE=90°,即EC⊥BD;(2)延长BD交CE于F,∵∠BAD+∠CAD=90°,∠CAD+∠EAC=90°,∴∠BAD=∠EAC,∵在△EAC和△DAB中,,∴,∴BD=CE,∠ABD=∠ACE.∵∠ABC+∠ACB=90°,∴∠CBF+∠BCF=∠ABC−∠ABD+∠ACB+∠ACE=90°,∴∠BFC=90°,即EC⊥BD.(3)延长BD交CE于F,∵∠BAD+∠CAD=60°,∠CAD+∠EAC=60°,∴∠BAD=∠EAC,∵在△EAC和△DAB中,,∴,∴BD=CE,∠ABD=∠ACE.∵∠ABC+∠ACB=120°,∴∠CBF+∠BCF=∠ABC−∠ABD+∠ACB+∠ACE=120°,∴∠BFC=60°【考点】本题考查了等腰直角三角形的性质、全等三角形的判定和性质、等边三角形的性质等知识,本题中求证△EAC≌△DAB是解题的关键.2、(1)证明见解析;(2)2.5;(3)100°.【解析】【分析】(1)由三角形内角和定理和角平分线得出的度数,再由三角形内角和定理可求出的度数,(2)在BC上取一点G使BG=BD,构造(SAS),再证明,即可得,由此求出答案;(3)延长BA到P,使AP=FC,构造(SAS),得PC=BC,,再由三角形内角和可求,,进而可得.【详解】解:(1)、分别是与的角平分线,,,,(2)如解(2)图,在BC上取一点G使BG=BD,由(1)得,,,∴,在与中,,∴(SAS)∴,∴,∴,∴在与中,,,,,;∵,,∴(3)如解(3)图,延长BA到P,使AP=FC,,∴,在与中,,∴(SAS)∴,,∴,又∵,∴,又∵,∴,∴,,∴,【考点】本题考查的是角平分线的性质、全等三角形的判定与性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键.3、(1)50°(2)①6cm;②存在点P,点P与点M重合,△PBC周长的最小值为【解析】【分析】(1)根据等腰三角形的性质得出∠B=∠C=70°,在△ABC中,根据三角形内角和定理求得∠A=40°,在△AMN中,根据三角形内角和定理求得∠NMA=50°;(2)①根据线段垂直平分线可得AM=BM,根据△MBC的周长=BM+BC+CM=AM+BC+CM即可求解;②根据对称轴的性质可知,M点就是点P所在的位置,△PBC的周长最小值就是△MBC的周长.【详解】解:(1)∵AB=AC,∴∠B=∠C=70°,∴∠A=180°-70°-70°=40°∵MN垂直平分AB交AB于N∴MN⊥AB,∠ANM=90°,在△AMN中,∠NMA=180°-90°-40°=50°;(2)①如图所示,连接MB,∵MN垂直平分AB交于AB于N∴AM=BM,∴△MBC的周长=BM+BC+CM=AM+BC+CM=BC+AC=又∵AB=AC=8cm,∴BC=14cm-8cm=6cm;②如图所示,∵MN垂直平分AB,∴点A、B关于直线MN对称,AC与MN

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论