版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版9年级数学上册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题24分)一、单选题(6小题,每小题2分,共计12分)1、关于x的方程有两个实数根,,且,那么m的值为(
)A. B. C.或1 D.或42、若实数满足,则的值是()A.1 B.-3或1 C.-3 D.-1或33、如图,一农户要建一个矩形花圃,花圃的一边利用长为12m的住房墙,另外三边用25m长的篱笆围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,花圃面积为80m2,设与墙垂直的一边长为xm,则可以列出关于x的方程是()A.x(26﹣2x)=80 B.x(24﹣2x)=80C.(x﹣1)(26﹣2x)=80 D.(x-1)(25﹣2x)=804、如图,ABC是等边三角形,点D、E分别在BC、AC上,且∠ADE=60°,AB=9,BD=3,则CE的长等于()A.1 B. C. D.25、关于的一元二次方程的两根应为(
)A. B., C. D.6、一元二次方程的解是(
)A., B., C. D.,二、多选题(6小题,每小题2分,共计12分)1、下列说法中,正确的是(
)A.两角对应相等的两个三角形相似B.两边对应成比例的两个三角形相似C.两边对应成比例且夹角相等的两个三角形相似D.三边对应成比例的两个三角形相似2、一个两位数,十位数字与个位数字之和是5,把这个数的个位数字与十位数字对调后,所得的新的两位数与原来的两位数的乘积是736,原来的两位数是(
)A.23 B.32 C. D.3、平行四边形的对角线与相交于点,添加以下条件,能判定平行四边形为菱形的是(
).A. B. C. D.4、如图,在△ABC中,∠BAC=90°,D是BC的中点,AE⊥AD交CB的延长线于点E.下列结论不正确的是(
)A.△AED∽△ACB B.△AEB∽△ACDC.△BAE∽△ACE D.△AEC∽△DAC5、两个关于的一元二次方程和,其中,,是常数,且.如果是方程的一个根,那么下列各数中,一定是方程的根的是()A. B. C.2 D.-26、矩形一定具有的性质是().A.对角线相等 B.内角和为180° C.邻边相等 D.对角互补第Ⅱ卷(非选择题76分)三、填空题(8小题,每小题2分,共计16分)1、如图,在平行四边形ABCD中,,,,分别以A,C为圆心,大于的长为半径画弧,两弧相交于点M,N,过M,N两点作直线,与BC交于点E,与AD交于点F,连接AE,CF,则四边形AECF的周长为______.2、已知=,则=________.3、如图,在Rt△ABC中,∠ACB=90°,,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为______.4、若,则________.5、要利用一面很长的围墙和100米长的隔离栏建三个如图所示的矩形羊圈,若计划建成的三个羊圈总面积为400平方米,则羊圈的边长AB为多少米?设AB=x米,根据题意可列出方程的为_________.6、如图,一块飞镖游戏板由大小相等的小等边三角形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),则击中黑色区域的概率是____________.7、如图,D是的边BC上一点,,,.如果的面积为15,那么的面积为______.8、如图,在中,,点D是的中点,过点D作,垂足为点E,连接,若,,则________.四、解答题(6小题,每小题10分,共计60分)1、已知==,求的值.2、已知:.(1)求代数式的值;(2)如果,求的值.3、已知:如图所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点到达终点后,另外一点也随之停止运动.(1)如果P、Q分别从A、B同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.4、小敏与小霞两位同学解方程的过程如下框:小敏:两边同除以,得,则.小霞:移项,得,提取公因式,得.则或,解得,.你认为他们的解法是否正确?若正确请在框内打“√”;若错误请在框内打“×”,并写出你的解答过程.5、如图,在△ABC中,AB=AC,点P在BC上.(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若∠APC=2∠ABC,求证:PD//AB.6、如图所示,直线y=x+2与坐标轴交于A、B两点,与反比例函数y=(x>0)交于点C,已知AC=2AB.(1)求反比例函数解析式;(2)若在点C的右侧有一平行于y轴的直线,分别交一次函数图象与反比例函数图象于D、E两点,若CD=CE,求点D坐标.-参考答案-一、单选题1、A【解析】【分析】通过根与系数之间的关系得到,,由可求出m的值,通过方程有实数根可得到,从而得到m的取值范围,确定m的值.【详解】解:∵方程有两个实数根,,∴,,∵,∴,整理得,,解得,,,若使有实数根,则,解得,,所以,故选:A.【考点】本题考查了一元二次方程根与系数之间的关系和跟的判别式,注意使一元二次方程有实数根的条件是解题的关键.2、A【解析】【分析】设x2-3x=y.将y代入原方程得到关于y的一元二次方程y2+2y-3=0即可,解这个方程求出y的值,然后利用根的判别式检验即可.【详解】设x2-3x=y.将y代入原方程,得y2+2y-3=0,解之得,y=1或y=-3.当y=1时,x2-3x=1,△=b2-4ac=(-3)2-4×1×(-1)=9+4=13>0,有两个不相等的实数根,当y=-3时,x2-3x=-3,△=b2-4ac=(-3)2-4×1×3=9=12<0,无解.故y=1,即x2-3x=1.故选A.【考点】本题考查了换元法解一元二次方程及一元二次方程根的判别式,解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.3、A【解析】【分析】设与墙垂直的一边长为xm,则与墙平行的一边长为(26-2x)m,然后根据花圃面积为80m2列关于x的一元一次方程即可.【详解】解:设与墙垂直的一边长为xm,则与墙平行的一边长为(26-2x)m由题意得:x(26-2x)=80.故答案为A.【考点】本题考查了根据题意列一元二次方程,理解题意、设出未知数、表示出相关的量、找到等量关系列方程是解答本题的关键.4、D【解析】【分析】通过△ABD∽△DCE,可得,即可求解.【详解】解:∵△ABC是等边三角形,∴AB=BC=9,∠ABC=∠ACB=60°,∵BD=3,∴CD=6,∵∠ADC=∠ABC+∠BAD=∠ADE+∠CDE,∴∠BAD=∠CDE,∴△ABD∽△DCE,∴,∴∴CE=2,故选:D.【考点】本题考查了三角形的相似,做题的关键是△ABD∽△DCE.5、B【解析】【分析】先把方程化为一般式,再计算判别式的值,然后利用求根公式解方程即可.【详解】x2−3ax+a2=0,△=(−3a)2−4××a2=a2,x=.所以x1=a,x2=a.故答案选B.【考点】本题考查了解一元二次方程,解题的关键是根据公式法解一元二次方程.6、B【解析】【分析】利用提公因式分进行因式分解,再解方程,即可得到答案.【详解】解:x(5x-2)=0,x=0或5x-2=0,所以或.故选:B.【考点】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.二、多选题1、ACD【解析】【分析】根据相似三角形的判定定理判断即可.【详解】A
“两角对应相等的两个三角形相似”是正确的;B
“两边对应成比例的两个三角形相似”是错误的,还需添上条件“且夹角相等”才成立;C
“两边对应成比例且夹角相等的两个三角形相似”是正确的;D
“三边对应成比例的两个三角形相似”是正确的故选:ACD【考点】本题考查了相似三角形的判定定理,做题的关键是熟练掌握相似三角形的判定定理.2、AB【解析】【分析】设原来的两位数十位上的数字为,则个位上的数字为,根据所得到的新两位数与原来的两位数的乘积为736,可列出方程求解即可.【详解】解:设原来的两位数十位上的数字为,则个位上的数字为,依题意可得:,解得:,,当时,,符合题意,原来的两位数是23,当时,,符合题意,原来的两位数是32,∴原来的两位数是23或32,故选AB.【考点】本题考查了一元二次方程的应用,解题的关键是能正确用每一数位上的数字表示这个两位数.3、ABC【解析】【分析】根据菱形判定条件对各选项进行判断即可;【详解】解:当时,平行四边形是菱形;当时,平行四边形是菱形;当时,平行四边形是菱形;故选A、B、C.【考点】本题考查了菱形的判定.解题的关键在于熟练掌握菱形的判定条件.4、ABD【解析】【分析】先利用直角三角形斜边上的中线等于斜边的一半得到DA=DC,则∠DAC=∠C,再利用等角的余角相等得到∠EAB=∠DAC,从而有∠EAB=∠C,再加上公共角即可判断△BAE∽△ACE.【详解】解:∵∠BAC=90°,D是BC中点,∴DA=DC,∴∠DAC=∠C,又∵AE⊥AD,∴∠EAB+∠BAD=90°,∠CAD+∠BAD=90°,∴∠EAB=∠DAC,∴∠EAB=∠C,而∠E是公共角,∴△BAE∽△ACE∴C选项正确,ABD选项错误,故选ABD.【考点】此题主要考查学生对相似三角形判定定理的掌握和应用.5、AD【解析】【分析】利用方程根的定义去验证判断即可.【详解】∵,,∴,∴,,∴,,∵是方程的一个根,∴是方程的一个根,∴是方程的一个根,即时方程的一个根.∵是方程的一个根,∴,当x=时,,∴是方程的根.故选:A,D.【考点】本题考查了一元二次方程根的定义即使得方程两边相等的未知数的值,正确理解定义是解题的关键.6、AD【解析】【分析】根据矩形的性质依次进行判断即可.【详解】解:A、矩形的对角线相等,正确;B、矩形的内角和为360°,选项错误;C、矩形的邻边不一定相等,选项错误;D、矩形的对角相等均为90°,所以对角互补,正确;故选:AD.【考点】题目主要考查矩形的性质,理解矩形的性质是解题关键.三、填空题1、10【解析】【分析】根据作图可得,且平分,设与的交点为,证明四边形为菱形,根据平行线分线段成比例可得为的中线,然后勾股定理求得,根据直角三角形中斜边上的中线等于斜边的一半可得的长,进而根据菱形的性质即可求解.【详解】解:如图,设与的交点为,根据作图可得,且平分,,四边形是平行四边形,,,又,,,,,四边形是平行四边形,垂直平分,,四边形是菱形,,,,,为的中点,中,,,,,四边形AECF的周长为.故答案为:.【考点】本题考查了垂直平分线的性质,菱形的性质与判定,勾股定理,平行线分线段成比例,平行四边形的性质与判定,综合运用以上知识是解题的关键.2、【解析】【分析】利用比例的性质进行变形,然后代入代数式中合并约分即可.【详解】解:∵,∴,则.故答案为:.【考点】本题考查比例问题,关键掌握比例的性质,会利用性质把比例式进行恒等变形,会根据需要选择灵活的比例式解决问题.3、或##或【解析】【分析】连接,根据题意可得,当∠ADQ=90°时,分点在线段上和的延长线上,且,勾股定理求得即可.【详解】如图,连接,在Rt△ABC中,∠ACB=90°,,,,,根据题意可得,当∠ADQ=90°时,点在上,且,,如图,在中,,在中,故答案为:或.【考点】本题考查了旋转的性质,勾股定理,直角三角形斜边上中线的性质,确定点的位置是解题的关键.4、【解析】【分析】设,,代入求解即可.【详解】由可设,,k是非零整数,则.故答案为:.【考点】本题主要考查了比例的基本性质,准确利用性质变形是解题的关键.5、x(100-4x)=400【解析】【分析】由题意,得BC的长为(100-4x)米,根据矩形面积列方程即可.【详解】解:设AB为x米,则BC的长为(100-4x)米由题意,得x(100-4x)=400故答案为:x(100-4x)=400.【考点】本题主要考查了一元二次方程的实际问题,解决问题的关键是通过图形找到对应关系量,根据等量关系式列方程.6、【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】解:∵总面积为9个小等边形的面积,其中阴影部分面积为3个小等边形的面积,∴飞镖落在阴影部分的概率是=,故答案为:.【考点】本题主要考查了概率求解问题,准确分析计算是解题的关键.7、5【解析】【分析】先证明△ACD∽△BCA,再根据相似三角形的性质得到:△ACD的面积:△ABC的面积为1:4,再结合△ABD的面积为15,然后求出△ACD的面积即可.【详解】∵,,∴,∵,,∴,∴的面积,故答案是:5.【考点】本题主要考查了相似三角形的判定和性质、掌握相似三角形的面积比等于相似比的平方是解答本题的关键.8、3【解析】【分析】根据直角三角形的性质得到AB=10,利用勾股定理求出AC,再说明DE∥AC,得到,即可求出DE.【详解】解:∵∠ACB=90°,点D为AB中点,∴AB=2CD=10,∵BC=8,∴AC==6,∵DE⊥BC,AC⊥BC,∴DE∥AC,∴,即,∴DE=3,故答案为:3.【考点】本题考查了直角三角形的性质,勾股定理,平行线分线段成比例,解题的关键是通过平行得到比例式.四、解答题1、-1【解析】【分析】设===k,则a+b=3k,b+c=4k,c+a=5k,把三式相加得到a+b+c=6k,再利用加减消元法可计算出a=2k,b=k,c=3k,然后把a=2k,b=k,c=3k代入中进行分式的化简求值即可.【详解】解:设===k,则a+b=3k,b+c=4k,c+a=5k,三式相加得a+b+c=6k①用①式分别减去上述三个式子,可得出解得a=2k,b=k,c=3k,所以==-1.【考点】本题考查了比例的性质,掌握设比法求值是解题关键.2、(1)1;(2)【解析】【分析】(1)设a=2k,b=3k,c=5k,代入代数式,即可求出答案;(2)把a、b、c的值代入,求出即可.【详解】∵∴设a=2k,b=3k,c=5k,(1);(2)∵∴6k-3k+5k=24,∴k=3,∴a=2×3=6,b=3×3=9,c=5×3=15.【考点】本题考查了比例的性质的应用,主要考查学生的计算能力.3、(1)1秒;(2)不可能,见解析【解析】【分析】(1)经过x秒钟,△PBQ的面积等于4cm2,根据点P从A点开始沿AB边向点B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,表示出BP和BQ的长可列方程求解;(2)看△PBQ的面积能否等于7cm2,只需令×2x(5﹣x)=7,化简该方程后,判断该方程的△与0的关系,大于或等于0则可以,否则不可以.【详解】解:(1)设经过x秒以后△PBQ面积为4cm2,根据题意得(5﹣x)×2x=4,整理得:x2﹣5x+4=0,解得:x=1或x=4(舍去).答:1秒后△PBQ的面积等于4cm2;4、两位同学的解法都错误,正确过程见解析【解析】【分析】根据因式分解法解一元二次方程【详解】解:小敏:两边同除以,得,则.(×)小霞:移项,得,提取公因式,得.则或,解得,.(×)正确解答:移项,得,提取公因式,得,去括号,得,则或,解得,.【考点】本题考查因式分解法解一元二次方程,掌握因式分解的技巧准确计算是解题关键.5、(1)见解析;(2)见解析【解析】【分析】(1)根据相似三角形的性质可得∠CPD=∠BAP,故作∠CPD=∠BAP,∠CPD与AC的交点为D即可;(2)利用外角的性质以及(1)中∠CPD=∠BAP可得∠CPD=∠ABC,再根据平行线的判定即可.【详解】解:(1)∵△PCD∽△ABP,∴∠CPD=∠BAP,故作∠CPD=∠BAP即可,如图,即为所作图形,(2)∵∠APC=∠APD+∠DPC=∠AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030全球及中国先进气体传感器行业运营态势与投资前景调查研究报告
- 签商品房买卖合同
- 演艺总监合同
- 2025年Python游戏开发考试真题解析试卷:游戏引擎应用解析
- 2025国网广西高校毕业生提前批招聘(约450人)笔试模拟试题浓缩500题含答案详解(综合卷)
- 钉钉查看合同
- 2026秋季国家管网集团北方管道公司高校毕业生招聘考试备考试题(浓缩500题)带答案详解(精练)
- 2025国网广西电力校园招聘(提前批)笔试模拟试题浓缩500题附答案详解(b卷)
- 2025至2030电池行业项目调研及市场前景预测评估报告
- 2025至2030全球及中国数字版权管理(DRM)软件行业产业运行态势及投资规划深度研究报告
- 2025-2030中国肌肉松弛药行业市场现状供需分析及投资评估规划分析研究报告
- T/CCSAS 023-2022危险化学品企业紧急切断阀设置和使用规范
- 《农机安全生产重大事故隐患判定标准(试行)》解读与培训
- 2025电力变压器声纹监测与诊断技术
- 军队文职招聘(中医学)笔试题库(全真题库)
- 细胞培养肉技术研究进展
- 公司员工职业素养培训
- 双排钢管脚手架施工方案
- 桡骨远端骨折外固定支架护理
- 医学资料 急诊医学科开展ECMO与ECPR 学习课件
- 商场物业管理案例分析
评论
0/150
提交评论