考点解析-冀教版8年级下册期末试卷审定版附答案详解_第1页
考点解析-冀教版8年级下册期末试卷审定版附答案详解_第2页
考点解析-冀教版8年级下册期末试卷审定版附答案详解_第3页
考点解析-冀教版8年级下册期末试卷审定版附答案详解_第4页
考点解析-冀教版8年级下册期末试卷审定版附答案详解_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

冀教版8年级下册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、已知点(﹣1,y1),(4,y2)在一次函数y=3x+a的图象上,则y1,y2的大小关系是()A.y1<y2 B.y1=y2 C.y1>y2 D.不能确定2、已知点P(2﹣m,m﹣5)在第三象限,则整数m的值是()A.4 B.3,4 C.4,5 D.2,3,43、下面调查统计中,适合采用普查方式的是()A.华为手机的市场占有率 B.“现代”汽车每百公里的耗油量C.“国家宝藏”专栏电视节目的收视率 D.乘坐飞机的旅客是否携带了违禁物品4、在平面直角坐标系中,已知a<0,b>0,则点P(a,b)一定在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5、已知一次函数y=k1x+b1和一次函数y1=k2x+b2的自变量x与因变量y1,y2的部分对应数值如表所示,则关于x、y的二元一次方程组的解为()x…﹣2﹣1012…y1…﹣10123…y2…﹣5﹣3﹣113…A. B. C. D.6、一多边形的每一个内角都等于它相邻外角的4倍,则该多边形的内角和是()A.360° B.900° C.1440° D.1800°7、某学校对八年级1班50名学生进行体能评定,进行了“长跑”、“立定跳远”、“跳高”的测试,根据测试总成绩划分体能等级,等级分为“优秀”、“良好”、“合格”、“较差”四个等级,该班级“优秀”的有28人,“良好”的有15人,“合格”的有5人,则该班级学生这次体能评定为“较差”的频率是()A.2 B.0.02 C.4 D.0.04第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、如图,在中,,D为外一点,使,E为BD的中点若,则__________.2、如图,矩形中,,,以点为中心,将矩形旋转得到矩形,使得点落在边上,则的度数为__________.3、如图,在矩形中,的角平分线交于点,连接,恰好平分,若,则的长为______.4、将直线向下平移4个单位后,所得直线的表达式是______.5、点关于y轴的对称点的坐标为________.6、某班按课外阅读时间将学生分为3组,第1、2组的频率分别为0.2、0.5,则第3组的频率是___.7、函数的定义域为__________.8、如图,在平行四边形ABCD中,∠D=100°,AC为对角线,将△ACD绕点A顺时针旋转一定的角度后得到△AEF,使点D的对应点E落在边AB上,若点C的对应点F落在边CB的延长线上,则∠EFB的度数为___.三、解答题(7小题,每小题10分,共计70分)1、如图,已知ABC中,,,AB=6,点P是射线CB上一点(不与点B重合),EF为PB的垂直平分线,交PB于点F,交射线AB于点E,联结PE、AP.(1)求∠B的度数;(2)当点P在线段CB上时,设BE=x,AP=y,求y关于x的函数解析式,并写出函数的定义域;(3)当APB为等腰三角形时,请直接写出AE的值.2、已知:在平行四边形ABCD中,分别延长BA,DC到点E,H,使得BE=2AB,DH=2CD.连接EH,分别交AD,BC于点F,G.(1)求证:AF=CG;(2)连接BD交EH于点O,若EH⊥BD,则当线段AB与线段AD满足什么数量关系时,四边形BEDH是正方形?3、在一定弹性限度内,弹簧挂上物体后会伸长.现测得一弹簧长度y(cm)与所挂物体质量x(kg)有如下关系:(已知在弹性限度内该弹簧悬挂物体后的最大长度为21cm.)所挂物体质量x/kg0123456弹簧长度y/cm1212.51313.51414.515(1)有下列说法:①x与y都是变量,且x是自变量,y是x的函数;②所挂物体质量为6kg时,弹簧伸长了3cm;③弹簧不挂重物时的长度为6cm;④物体质量每增加1kg,弹簧长度y增加0.5cm.上述说法中错误的是(填序号)(2)请写出弹簧长度y(cm)与所挂物体质量x(kg)之间的关系式及自变量的取值范围.(3)预测当所挂物体质量为10kg时,弹簧长度是多少?(4)当弹簧长度为20cm时,求所挂物体的质量.4、国庆期间,小龚自驾游去了离家156千米的月亮湾,如图是小龚离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求小龚出发36分钟时,离家的距离;(2)求出AB段的图象的函数解析式;(3)若小龚离目的地还有72千米,求小龚行驶了多少小时.5、为了做好防疫工作,学校准备购进一批消毒液.已知A型消毒液7元/瓶,B型消毒液9元/瓶.学校准备购进这两种消毒液共90瓶.(1)写出购买所需总费用w元与A瓶个数x之间的函数表达式;(2)若B型消毒液的数量不少于A型消毒液数量的,请设计最省钱的购买方案,并求出最少费用.6、甲、乙两车匀速从同一地点到距离出发地480千米处的景点,甲车出发半小时后,乙车以每小时80千米的速度沿同一路线行驶,两车分别到达目的地后停止,甲、乙两车之间的距离(千米)与甲车行驶的时间x(小时)之间的函数关系如图所示.(1)甲车行驶的速度是千米/小时.(2)求乙车追上甲车后,y与x之间的函数关系式,并写出自变量x的取值范围.(3)直接写出两车相距85千米时x的值.7、在△ABC中,BC=AC,∠C=90°,D是BC边上一个动点(不与点B,C重合),连接AD,以AD为边作正方形ADEF(点E,F都在直线BC的上方),连接BE.(1)根据题意补全图形,并证明∠CAD=∠BDE;(2)用等式表示线段CD与BE的数量关系,并证明;(3)用等式表示线段AD,AB,BE之间的数量关系(直接写出).-参考答案-一、单选题1、A【解析】【分析】根据一次函数y=3x+a的一次项系数k>0时,函数值随自变量的增大而增大的性质来求解即可.【详解】解:∵一次函数y=3x+a的一次项系数为3>0,∴y随x的增大而增大,∵点(﹣1,y1),(4,y2)在一次函数y=3x+a的图象上,﹣1<4,∴y1<y2,故选:A.【点睛】本题考查了一次函数的性质,掌握,时,随的增大而增大是解题的关键.2、B【解析】【分析】根据第三象限点的坐标特点列不等式组求出解集,再结合整数的定义解答即可.【详解】解:∵P(2﹣m,m﹣5)在第三象限∴2−m<0m−5∵m是整数∴m的值为3,4.故选B.【点睛】本题主要考查了平面直角坐标系内点的坐标特点、解不等式组等知识点,掌握第三象限内的点横、纵坐标均小于零成为解答本题的关键.3、D【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:A、对华为手机的市场占有率的调查范围广,适合抽样调查,故此选项不符合题意;B、对“现代”汽车每百公里的耗油量的调查范围广适合抽样调查,故此选项不符合题意;C、对“国家宝藏”专栏电视节目的收视率的调查范围广,适合抽样调查,故此选项不符合题意;D、对乘坐飞机的旅客是否携带了违禁物品的调查情况适合普查,故此选项符合题意;故选:D.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4、B【解析】【分析】由题意知P点在第二象限,进而可得结果.【详解】解:∵a<0,b>0∴P点在第二象限故选B.【点睛】本题考查了平面直角坐标系中点的位置.解题的关键在于明确横坐标为负,纵坐标为正的点在第二象限.5、C【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.【详解】解:由表格可知,一次函数y1=k1x+b1和一次函数y2=k2x+b2的图象都经过点(2,3),∴一次函数y1=k1x与y=k2x+b的图象的交点坐标为(2,3),∴关于x,y的二元一次方程组的解为.故选:C.【点睛】本题考查了一次函数图像交点坐标与方程组解的关系:对于函数y1=k1x+b1,y2=k2x+b2,其图象的交点坐标(x,y)中x,y的值是方程组的解.6、C【解析】【分析】设每一个外角都为x,则相邻的内角为4x,然后根据“邻补角和为180°”列方程求得外角的大小,然后再根据多边形外角和定理求得多边形边数,最后运用多边形内角和公式求解即可.【详解】解:设每一个外角都为x,则相邻的内角为4x,由题意得,4x+x=180°,解得:x=36°,多边形的外角和为360°,360°÷36°=10,所以这个多边形的边数为10,则该多边形的内角和是:(10﹣8)×180=1440°.故选:C.【点睛】本题主要考查了多边形内角和相邻外角的关系、多边形的外角和、多边形内角和等知识点,掌握多边形的外角和为360°是解答本题的关键.7、D【解析】【分析】先求解该班级学生这次体能评定为“较差”的频数,再利用频率=落在某小组的频数除以数据的总数,从而可得答案.【详解】解:该班级学生这次体能评定为“较差”的频数是:则该班级学生这次体能评定为“较差”的频率是:故选D【点睛】本题考查的是已知频数与数据的总数求解频率,掌握“频率=落在某小组的频数除以数据的总数”是解本题的关键.二、填空题1、##30度【解析】【分析】延长BC、AD交于F,通过全等证明C是BF的中点,然后利用中位线的性质即可.【详解】解:延长BC、AD交于F,在△ABC和△AFC中,∴△ABC≌△AFC(ASA),∴BC=FC,∴C为BF的中点,∵E为BD的中点,∴CE为△BDF的中位线,∴CE//AF,∴∠ACE=∠CAF,∵∠ACB=90°,∠ABC=60°,∴∠BAC=30°,∴∠ACE=∠CAF=∠BAC=30°,故答案为:30°.【点睛】本题考查了全等三角形的判定与性质、三角形中位线的定义与性质,以及平行线的性质,作出正确的辅助线是解题的关键.2、90【解析】【分析】根据旋转的性质和矩形的性质可得CD=C'D=AB=AB'=3,A'D=AD=BC=B'C'=4,由勾股定理可求AC=AC'的长,延长C'B'交BC于点E,连接CC',由勾股定理求出CC'的长,最后由勾股定理逆定理判断是直角三角形即可.【详解】解:∵将矩形ABCD绕点A按逆时针方向旋转90°,得到矩形AB′C′D′,∴CD=C'D=AB=AB'=3,A'D=AD=BC=B'C'=4,∴延长C'B'交BC于点E,连接CC',如图,则四边形是矩形∴∴∴而∴∴是直角三角形∴故答案为:90【点睛】本题考查勾肥定理、旋转的性质,矩形的性质等知识,解题的关键是掌握旋转变换的性质,3、【解析】【分析】根据矩形的性质得,,,根据BE是的角平分线,得,则,,在中,根据勾股定理得,根据平行线的性质得,由因为EC平分则,等量代换得,所以,,即可得.【详解】解:∵四边形ABCD为矩形,∴,,,∵,BE是的角平分线,∴,∴,在中,根据勾股定理得,,∵,∴,∵EC平分,∴,∴,∴,∴,∴,故答案为:.【点睛】本题考查了矩形的性质,勾股定理,角平分线的性质,平行线的性质,解题的关键是掌握这些知识点.4、【解析】【分析】根据直线向下平移4个单位,可得平移后的直线的表达式为,即可求解.【详解】解:将直线向下平移4个单位后,所得直线的表达式是.故答案为:【点睛】本题主要考查了一次函数图象的平移,熟练掌握一次函数图象向上平移个单位后得到;向下平移个单位后得到是解题的关键.5、【解析】【分析】根据关于y轴对称的两个点,纵坐标相等,横坐标互为相反数求解即可【详解】解:点关于y轴的对称点的坐标为故答案为:【点睛】本题考查了关于坐标轴对称的点的特征,掌握关于y轴对称的两个点,纵坐标相等,横坐标互为相反数是解题的关键.6、0.3【解析】【分析】根据各组频率之和为1,可求出答案.【详解】解:由各组频率之和为1得,1-0.2-0.5=0.3,故答案为:0.3.【点睛】本题考查频数和频率,理解“各组频数之和等于样本容量,各组频率之和等于1”是正确解答的前提.7、且【解析】【分析】由分式与二次根式有意义的条件可得再解不等式组即可得到答案.【详解】解:由题意可得:由①得:由②得:所以函数的定义域为且故答案为:且【点睛】本题考查的是二次函数的自变量的取值范围,分式有意义的条件,二次根式有意义的条件,掌握“分式与二次根式有意义的条件”是解本题的关键.8、20°##20度【解析】【分析】根据平行四边形ABCD性质求出∠DAB=180°-∠D=80°,根据△ACD绕点A顺时针旋转一定的角度后得到△AEF,得出AF=AC,∠FAE=∠CAD,∠AFE=∠ACD,利用等腰三角形性质求出∠AFC=∠ACF=,根据平行线性质∠DAC=∠ACF=50°,利用三角形内角和求出∠ACD=180°-∠D-∠CAD=180°-100°-50°=30°即可.【详解】解:在平行四边形ABCD中,∠D=100°,∴∠DAB=180°-∠D=80°,∵△ACD绕点A顺时针旋转一定的角度后得到△AEF,∴AF=AC,∠FAE=∠CAD,∠AFE=∠ACD,∴∠FAC=∠FAE+∠BAC=∠CAD+∠BAC=∠BAD=80°∴∠AFC=∠ACF=∵AD∥BC,∴∠DAC=∠ACF=50°,∴∠ACD=180°-∠D-∠CAD=180°-100°-50°=30°,∴∠AFE=∠ACD=30°,∴∠EFB=∠AFC-∠AFE=50°-30°=20°,故答案为20°.【点睛】本题考查平行四边形的性质,图形旋转性质,等腰三角形性质,角的和差,三角形内角和,掌握平行四边形的性质,图形旋转性质,等腰三角形性质,角的和差,三角形内角和是解题关键.三、解答题1、(1)(2)当点P在线段BC上时,;当点P在CB延长线上时,(3)4或或【解析】【分析】(1)根据勾股定理的逆定理证明出△ABC是直角三角形,且∠BAC=,取BC的中点M,连接AM,则=CM,证得△ACM是等边三角形,求得∠B=;(2)当点P在线段BC上时,过点A作AD⊥BC于D,根据直角三角形的性质得到,,由勾股定理得,求出,得到BP=3x,由勾股定理求出CD,BF,得到DP,由AD2+DP2=AP2,推出y2=3x2−18x+36,根据y>0,得到函数关系式;当点P在CB延长线上时,过点P作PH⊥AB(3)当AP=BP时,根据等腰三角形等边对等角的性质及线段垂直平分线的性质证得∠APE=,得到AE=2PE=2BE,由此求出AE=4;当BP=AB=6时,根据线段垂直平分线的性质求出PF=BF=3,利用直角三角形30度角的性质求出BE=2EF,利用勾股定理得EF2+BF2=(2EF)2,求出BE,即可得到AE的值.当点P在CB延长线上且BP=AB=6时,根据线段垂直平分线的性质求出PF=BF=3,利用直角三角形30度角的性质求出BE=2EF(1)解:ABC中,,,AB=6,∵AC∴△ABC是直角三角形,且∠BAC=,取BC的中点M,连接AM,则=CM,∵,,∴AC=1∴AC=AM=CM,∴△ACM是等边三角形,∴∠C=∴∠B=;(2)解:当点P在线段BC上时,过点A作AD⊥BC于D,在△ADB中,∠ADB=,∠B=,∴,同理,∴CD=A在Rt△BEF中,,∴(1∴,又∵BP=2BF,∴BP=3∴DP=33∵AD∴32∴y2∵y>0,∴;当点P在CB延长线上时,过点P作PH⊥AB交延长线于H,∵PE=BE=x,∠PEH=2∠PBH=∴EH=1∴PH=P∴AH=AB+BE+EH=6+3∵AH∴(6+3∴y2∵y>0,∴;综上,当点P在线段BC上时,;当点P在CB延长线上时,;(3)解:当AP=BP时,则∠PAB=∠B=,如图,∴∠APB=120°,∵EF为PB的垂直平分线,∴PE=BE,∴∠BPE=∠B=,∴∠APE=,∴AE=2PE=2BE,∵AE+BE=6,∴AE=4;当BP=AB=6时,如图,∵EF为PB的垂直平分线,∴PF=BF=3,∵∠B=,∴BE=2EF,∵EF∴EF=3∴AE=AB-BE=;当点P在CB延长线上且BP=AB=6时,如图,∵EF为PB的垂直平分线,∴PF=BF=3,∵∠EBF=,∴BE=2EF,∵EF∴EF=3∴AE=AB+BE=;综上,AE的值为4或或.【点睛】此题考查了勾股定理及逆定理,直角三角形30度角的性质,线段垂直平分线的性质,等腰三角形的性质,求函数解析式,熟记各知识点并综合应用是解题的关键.2、(1)见解析(2)当AD=AB时,四边形BEDH是正方形【解析】【分析】(1)要证明AF=CG,只要证明△EAF≌△HCG即可;(2)利用已知可得四边形BEDH是菱形,所以当AE2+DE2=AD2时,∠BED=90°,四边形BEDH是正方形.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠BAD=∠BCD,∴∠AEF=∠CHG,∵BE=2AB,DH=2CD,∴BE=DH,∴BE-AB=DH-DC,∴AE=CH,∴∠BAD+∠EAF=180°,∠BCD+∠GCH=180°,∴∠EAF=∠GCH,∴△EAF≌△HCG(ASA),∴AF=CG;(2)解:当AD=AB时,四边形BEDH是正方形;理由:∵BE∥DH,BE=DH,∴四边形EBHD是平行四边形,∵EH⊥BD,∴四边形EBHD是菱形,∴ED=EB=2AB,当AE2+DE2=AD2时,则∠BED=90°,∴四边形BEDH是正方形,即AB2+(2AB)2=AD2,∴AD=AB,∴当AD=AB时,四边形BEDH是正方形..【点睛】本题考查了正方形的判定,菱形的判定,平行四边形的性质,全等三角形的判定与性质,结合图形分析并熟练掌握正方形的判定,平行四边形的性质,是解题的关键.3、(1)③④;(2)y=0.5x+12(0≤x≤18);(3)弹簧长度是17cm;(4)所挂物体的质量为16kg.【解析】【分析】(1)由表格可得弹簧原长以及所挂物体每增加1kg弹簧伸长的长度,可得答案;(2)由(1)中结论可求出弹簧总长y(cm)与所挂重物x(kg)之间的函数关系式;(3)令x=10时,求出y的值即可;(4)令y=20时,求出x的值即可.(1)解:x与y都是变量,且x是自变量,y是x的函数,故①正确;当x=6时,y=15,当x=0时,y=12,15-12=3,故②正确,③错误;在弹性限度内,物体质量每增加1kg,弹簧长度y增加0.5cm,但是当超出弹性限度后,弹簧长度就不再增加,故④错误;故答案为:③④;(2)解:弹簧长度y(cm)与所挂物体质量x(kg)之间的关系式为y=0.5x+12,∵在弹性限度内该弹簧悬挂物体后的最大长度为21cm.∴0.5x+12≤21,解得:x≤18,∴y=0.5x+12(0≤x≤18);(3)解:当x=10kg时,代入y=0.5x+12,解得y=17cm,即弹簧长度是17cm;(4)当y=20cm时,代入y=0.5x+12,解得x=16,即所挂物体的质量为16kg.【点睛】本题考查了函数的关系式及函数值,关键在于根据图表信息列出等式,然后变形为函数的形式.4、(1)36千米(2)y=90x-24(0.8≤x≤2)(3)1.2小时【解析】【分析】(1)由OA段可求得此时小龚驾车的速度,从而可求得36分钟离家的距离;(2)用待定系数法.AB段过点A与B,把这两点的坐标代入所设函数解析式中即可求得函数解析式;(3)由题意可得小龚离家的距离,根据(2)中求得的函数解析式的函数值,解方程即可求得x的值,从而求得小龚行驶的时间.(1)在OA段,小龚行驶的速度为:48÷0.8=60(千米/时),36分钟=0.6小时,则小龚出发36分钟时,离家的距离为60×0.6=36(千米);(2)由图象知:,设AB段的函数解析式为:把A、B两点的坐标分别代入上式得:解得:∴AB段的函数解析式为(0.8≤x≤2)(3)由图象知,当小龚离目的地还有72千米时,他已行驶了156−72=84(千米)所以在中,当y=84时,即,得即小龚离目的地还有72千米,小龚行驶了1.2小时.【点睛】本题考查了一次函数(正比例函数)的图象与性质,待定系数法求函数解析式,已知函数值求自变量的值等知识,数形结合是本题的关键.5、(1)w=-2x+810(2)最省钱的购买方案是购进A型消毒液67瓶,购进B型消毒液23瓶,最低费用为676元【解析】【分析】(1)A瓶个数为x,则B瓶个数为(90-x),根据题意列式计算即可;(2)根据B型消毒液的数量不少于A型消毒液数量的,可以得到A型消毒液数量的取值范围,再根据一次函数的性质,即可求得最省钱的购买方案,计算出最少费用.(1)解:A瓶个数为x,则B瓶个数为(90-x),依题意可得:w=7x+9(90-x)=-2x+810;(2)解:∵B型消毒液的数量不少于A型消毒液数量的,∴,解得,由(1)知w=﹣2x+810,∴w随x的增大而减小,∴当x=67时,w取得最小值,此时w=﹣2×67+810=676,90﹣x=23,答:最省钱的购买方案是购进A型消毒液67瓶,购进B型消毒液23瓶,最低费用为676元.【点睛】本题考查了一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是列出相应的方程组和列出相应的函数关系式,利用一次函数的性质和不等式的性质解答.6、(1)60(2)y=20x-40();(3)或【解析】【分析】(1)用甲车行驶0.5小时的路程30除以时间即可得到速度;(2)分别求出相应线段的两个端点的坐标,再利用待定系数法求函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论