解析卷四川师范大学附属第一实验中学7年级数学下册第四章三角形章节测试试卷(详解版)_第1页
解析卷四川师范大学附属第一实验中学7年级数学下册第四章三角形章节测试试卷(详解版)_第2页
解析卷四川师范大学附属第一实验中学7年级数学下册第四章三角形章节测试试卷(详解版)_第3页
解析卷四川师范大学附属第一实验中学7年级数学下册第四章三角形章节测试试卷(详解版)_第4页
解析卷四川师范大学附属第一实验中学7年级数学下册第四章三角形章节测试试卷(详解版)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川师范大学附属第一实验中学7年级数学下册第四章三角形章节测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、已知的三边长分别为a,b,c,则a,b,c的值可能分别是()A.1,2,3 B.3,4,7C.2,3,4 D.4,5,102、以下列长度的三条线段为边,能组成三角形的是()A. B. C. D.3、以长为15cm,12cm,8cm、5cm的四条线段中的三条线段为边,可以画出三角形的个数是()A.1个 B.2个 C.3个 D.4个4、如图,已知,要使,添加的条件不正确的是()A. B. C. D.5、如图,E是正方形ABCD的边DC上一点,过点A作FA=AE交CB的延长线于点F,若AB=4,则四边形AFCE的面积是()A.4 B.8 C.16 D.无法计算6、以下列各组长度的线段为边,能构成三角形的是()A.1cm,1cm,8cm B.3cm,3cm,6cmC.3cm,4cm,5cm D.3cm,2cm,1cm7、尺规作图:作角等于已知角.示意图如图所示,则说明的依据是()A.SSS B.SAS C.ASA D.AAS8、以下列长度的各组线段为边,能组成三角形的是()A.,, B.,,C.,, D.,,9、如图,在和中,已知,在不添加任何辅助线的前提下,要使,只需再添加的一个条件不可以是()A. B. C. D.10、如图,一扇窗户打开后,用窗钩AB可将其固定()A.三角形的稳定性B.两点之间线段最短C.四边形的不稳定性D.三角形两边之和大于第三边第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、我们将一副三角尺按如图所示的位置摆放,则_______°.2、如图,点C是线段AB的中点,.请你只添加一个条件,使得≌.(1)你添加的条件是______;(要求:不再添加辅助线,只需填一个答案即可)(2)依据所添条件,判定与全等的理由是______.3、如图,点F,A,D,C在同一条直线上,,,,则AC等于_____.4、如图,AD是BC边上的中线,AB=5cm,AD=4cm,△ABD的周长是12cm,则BC的长是____cm.5、如图,Rt△ABC中,∠ACB=90°,AB=5,BC=3,将斜边AB绕点A顺时针旋转90°至AB′,连接B'C,则△AB′C的面积为_____.6、如图,在中,D、E分别为AC、BC边上一点,AE与BD交于点F.已知,,且的面积为60平方厘米,则的面积为______平方厘米;如果把“”改为“”其余条件不变,则的面积为______平方厘米(用含n的代数式表示).7、一副直角三角板,∠CAB=∠FDE=90°,∠F=45°,∠C=60°,按图中所示位置摆放,点D在边AB上,EFBC,则∠ADF的度数为_____度.8、如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D,己知DE=4,AD=6,则BE的长为___.9、已知a,b,c是△ABC的三边,化简:|a+b-c|+|b-a-c|=________.10、如图,,,,点在线段上以的速度由点向点运动,同时,点在线段上由点向点运动.它们运动的时间为设点的运动速度为,若使得与全等,则的值为______.三、解答题(6小题,每小题10分,共计60分)1、下面是“作一个角的平分线”的尺规作图过程.已知:如图,钝角.求作:射线OC,使.作法:如图,①在射线OA上任取一点D;②以点О为圆心,OD长为半径作弧,交OB于点E;③分别以点D,E为圆心,大于长为半径作弧,在内,两弧相交于点C;④作射线OC.则OC为所求作的射线.完成下面的证明.证明:连接CD,CE由作图步骤②可知______.由作图步骤③可知______.∵,∴.∴(________)(填推理的依据).2、已知三角形的两边长分别是4cm和9cm,如果第三边长是奇数,求第三边的长3、证明“全等三角形的对应角的平分线相等”.要求:将已有图形根据题意补充完整,并据此写出己知、求证和证明过程.4、如图,△ABC中,D是边BC的中点,过点C作CE∥AB,交AD的延长线于点E.求证:AB=CE.5、如图,BM、CN都是∆ABC的高,且BP﹦AC,CQ﹦AB,请探究AP与AQ的数量关系,并说明理由.6、如图,E为AB上一点,BD∥AC,AB=BD,AC=BE.求证:BC=DE.-参考答案-一、单选题1、C【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.【详解】解:A、1+2=3,不能组成三角形,不符合题意;B、3+4=7,不能组成三角形,不符合题意;C、2+3>4,能组成三角形,符合题意;D、4+5<10,不能组成三角形,不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.2、D【分析】根据三角形的三边关系,即可求解.【详解】解:A、因为,所以不能构成三角形,故本选项不符合题意;B、因为,所以不能构成三角形,故本选项不符合题意;C、因为,所以不能构成三角形,故本选项不符合题意;D、因为,所以能构成三角形,故本选项符合题意;故选:D【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.3、C【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【详解】解:首先可以组合为15cm,12cm,8cm;15cm,12cm,5cm;15cm,8cm、5cm;12cm,8cm、5cm.再根据三角形的三边关系,发现其中的12cm,8cm、5cm不符合,则可以画出的三角形有3个.故选:C.【点睛】本题考查了三角形的三边关系:即任意两边之和大于第三边,任意两边之差小于第三边.这里一定要首先把所有的情况组合后,再看是否符合三角形的三边关系.4、D【分析】已知条件AB=AC,还有公共角∠A,然后再结合选项所给条件和全等三角形的判定定理进行分析即可.【详解】解:A、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此选项不合题意;B、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此选项不合题意;C、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此选项不合题意;D、添加BE=CD不能判定△ABE≌△ACD,故此选项符合题意;故选:D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL(直角三角形),掌握三角形全等的判定方法是解题关键.5、C【分析】先证明可得从而可得答案.【详解】解:正方形ABCD,AB=4,故选C【点睛】本题考查的是小学涉及的正方形的性质,直角三角形全等的判定与性质,证明是解本题的关键.6、C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A、1+1=2<8,不能组成三角形,故此选项不合题意;B、3+3=6,不能组成三角形,故此选项不符合题意;C、3+4=7>5,能组成三角形,故此选项符合题意;D、1+2=3,不能组成三角形,故此选项不合题意;故选:C.【点睛】本题考查了构成三角形的条件,掌握“任意两边之和大于第三边,任意两边之差小于第三边”是解题的关键.7、A【分析】利用基本作图得到OD=OC=OD′=OC′,CD=C′D′,则根据全等三角形的判定方法可根据“SSS”可判断△OCD≌△O′C′D′,然后根据全等三角形的性质得到∠A′OB′=∠AOB.【详解】解:由作法可得OD=OC=OD′=OC′,CD=C′D′,所以根据“SSS”可判断△OCD≌△O′C′D′,所以∠A′OB′=∠AOB.故选:A.【点睛】本题考查了作图﹣基本作图和全等三角形的判定与性质,解题关键是熟练掌握基本作图和全等三角形的判定定理.8、C【分析】根据三角形三条边的关系计算即可.【详解】解:A.∵2+4=6,∴,,不能组成三角形;B.∵2+5<9,∴,,不能组成三角形;C.∵7+8>10,∴,,能组成三角形;D.∵6+6<13,∴,,不能组成三角形;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.三角形任意两边之和大于第三边,任意两边之差小于第三边.9、B【分析】添加AC=AD,利用SAS即可得到两三角形全等;添加∠D=∠C,利用AAS即可得到两三角形全等,添加∠CBE=∠DBE,利用ASA即可得到两三角形全等.【详解】解:A、添加AC=AD,利用SAS即可得到两三角形全等,故此选项不符合题意;B、添加BC=BD,不能判定两三角形全等,故此选项符合题意;C、添加∠D=∠C,利用AAS即可得到两三角形全等,故此选项不符合题意;D、添加∠CBE=∠DBE,利用ASA即可得到两三角形全等,故此选项不符合题意;故选:B.【点睛】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.10、A【分析】由三角形的稳定性即可得出答案.【详解】一扇窗户打开后,用窗钩AB可将其固定,故选:A.【点睛】本题考查了三角形的稳定性,加上窗钩AB构成了△AOB,而三角形具有稳定性是解题的关键.二、填空题1、45【分析】利用三角形的外角性质分别求得∠α和∠β的值,代入求解即可.【详解】解:根据题意,∠A=60°,∠C=30°,∠D=∠DBG=45°,∠ABC=∠DGB=∠DGC=90°,∴∠β=∠DBG+∠C=75°,∠α=∠DGC+∠C=120°,∴∠α−∠β=120°-75°=45°,故答案为:45.【点睛】本题考查了三角形的外角性质,解答本题的关键是明确题意,找到三角板中隐含的角的度数,利用数形结合的思想解答.2、AD=CE(或∠D=∠E或∠ACD=∠B)(答案不唯一)SAS【分析】(1)由已知条件可得两个三角形有一组对应边相等,一组对应角相等,根据三角形全等的判定方法添加条件即可;(2)根据添加的条件,写出判断的理由即可.【详解】解:(1)添加的条件是:AD=CE(或∠D=∠E或∠ACD=∠B)故答案为:AD=CE(或∠D=∠E或∠ACD=∠B)(2)若添加:AD=CE∵点C是线段AB的中点,∴AC=BC∵∴∴≌(SAS)故答案为:SAS【点睛】本题主要考查了添加条件判断三角形全等,熟练掌握全等三角形的判断方法是解答本题的关键.3、6.5【分析】由全等三角形的性质可得到AC=DF,从而推出AF=CD,再由,,求出,则.【详解】解:∵△ABC≌△DEF,∴AC=DF,即AF+AD=CD+AD,∴AF=CD,∵,,∴,∴,∴,故答案为:6.5.【点睛】本题主要考查了全等三角形的性质,线段的和差,解题的关键在于能够熟练掌握全等三角形的性质.4、6【分析】根据AD是BC边上的中线,得出为的中点,可得,根据条件可求出.【详解】解:AD是BC边上的中线,为的中点,,,△ABD的周长是12cm,,,故答案是:6.【点睛】本题考查了三角形的中线,解题的关键利用中线的性质得出为的中点.5、【分析】根据题意过点B'作B'H⊥AC于H,由全等三角形的判定得出△ACB≌△B'HA(AAS),得AC=B'H=4,则有S△AB'C=AC•B′H即可求得答案.【详解】解:过点B'作B'H⊥AC于H,∴∠AHB'=90°,∠BAB'=90°,∴∠HAB'+∠HB'A=90°,∠BAC+∠CAB'=90°,∴∠HB'A=∠CAB,在△ACB和△B'HA中,,∴△ACB≌△B'HA(AAS),∴AC=B'H,∵∠ACB=90°,AB=5,BC=3,∴AC===4,∴AC=B'H=4,∴S△AB'C=AC•B′H=×4×4=8.故答案为:8.【点睛】本题主要考查三角形全等的判定与性质和旋转的性质以及勾股定理,根据题意利用全等三角形的判定证明△ACB≌△B'HA是解决问题的关键.6、6【分析】连接CF,依据AD=CD,BE=2CE,且△ABC的面积为60平方厘米,即可得到S△BCD=S△ABC=30,S△ACE=S△ABC=20,设S△ADF=S△CDF=x,依据S△ACE=S△FEC+S△AFC,可得,解得x=6,即可得出△ADF的面积为6平方厘米;当BE=nCE时,运用同样的方法即可得到△ADF的面积.【详解】如图,连接CF,∵AD=CD,BE=2CE,且△ABC的面积为60平方厘米,∴S△BCD=S△ABC=30,S△ACE=S△ABC=20,设S△ADF=S△CDF=x,则S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x)=,∵S△ACE=S△FEC+S△AFC,∴,解得x=6,即△ADF的面积为6平方厘米;当BE=nCE时,S△AEC=,设S△AFD=S△CFD=x,则S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x),∵S△ACE=S△FEC+S△AFC,∴,解得,即△ADF的面积为平方厘米;故答案为:【点睛】本题主要考查了三角形的面积的计算,解决问题的关键是作辅助线,根据三角形之间的面积关系得出结论.解题时注意:三角形的中线将三角形分成面积相等的两部分.7、75【分析】设CB与ED交点为G,依据平行线的性质,即可得到∠CGD的度数,再根据三角形外角的性质,得到∠BDE的度数,即可得∠ADF的度数.【详解】如图所示,设CB与ED交点为G,∵∠CAB=∠FDE=90°,∠F=45°,∠C=60°,∴∠E=90°-∠F=45°,∠B=90°-∠C=30°,∵EF∥BC,∴∠E=∠CGD=45°,又∵∠CGD是△BDG的外角,∴∠CGD=∠B+∠BDE,∴∠BDE=45°-30°=15°,∴∠ADF=180°-90°-∠BDE=75°故答案为:75.【点睛】本题主要考查了平行线的性质以及三角形外角性质,解题时注意:两条平行线被第三条直线所截,同位角相等.8、2【分析】根据AAS证明△ACD≌△CBE,再利用其性质解答即可.【详解】解:∵∠ACB=90°,∴∠BCE+∠ACD=90°,∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,∠CAD+∠ACD=90°,∴∠BCE=∠CAD,在△ACD与△CBE中,,∴△ACD≌△CBE,∴BE=CD,CE=AD,∴BE=CD=CE−DE=AD−DE=6−4=2.故答案为:2.【点睛】本题考查三角形全等的判定和性质,要根据AAS证明△ACD≌△CBE是解题的关键.9、【分析】首先利用三角形的三边关系得出,然后根据求绝对值的法则进行化简即可.【详解】解:∵是的三条边,∴,∴=.故答案为:.【点睛】熟悉三角形的三边关系和求绝对值的法则,是解题的关键,注意,去绝对值后,要先添加括号,再去括号,这样不容易出错.|a+b-c|+|b-a-c|10、或【分析】分两种情形:①当≌时,可得:;②当≌时,,根据全等三角形的性质分别求解即可.【详解】解:①当≌时,可得:,运动时间相同,,的运动速度也相同,;②当≌时,,,,,故答案为:或.【点睛】本题考查全等三角形的性质,路程、速度、时间之间的关系等知识,解题的关键是理解题意,灵活运用所学知识进行分类解决问题.三、解答题1、OE;CE;全等三角形的对应角相等【分析】根据圆的半径相等可得OD=OE,CD=CE,再利用SSS可证明,从而根据全等三角形的性质可得结论.【详解】证明:连接CD,CE由作图步骤②可知___OE___.由作图步骤③可知__CE___.∵,∴.∴(__全等三角形对应角相等__)故答案为:OE;CE;全等三角形的对应角相等【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定和性质.2、第三边长为7cm或9cm或11cm【分析】设三角形的第三边长为xcm,根据三角形的三边关系确定x的范围,然后根据题意可求解.【详解】解:设三角形的第三边长为xcm,由三角形的两边长分别是4cm和9cm可得:,即为,∵第三边长是奇数,∴或9或11.【点睛】本题主要考查三角形的三边关系,熟练掌握三角形的三边关系是解题的关键.3、见解析.【分析】根据图形和命题写出已知求证,根据全等三角形的性质得出∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,根据角平分线的定义得出∠BAD=∠B′A′D′,根据全等三角形的判定得出△BAD≌△B′A′D′,再根据全等三角形的性质得出答案即可.【详解】解:如图,已知:△ABC≌△A′B′C′,AD、A′D′分别是∠BAC和∠B′A′C′的角平分线,求证:AD=A′D′,证明:∵△ABC≌△A′B′C′,∴∠B=∠B′,AB=A′B′,∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论