基础强化人教版8年级数学上册《全等三角形》同步训练试题(解析版)_第1页
基础强化人教版8年级数学上册《全等三角形》同步训练试题(解析版)_第2页
基础强化人教版8年级数学上册《全等三角形》同步训练试题(解析版)_第3页
基础强化人教版8年级数学上册《全等三角形》同步训练试题(解析版)_第4页
基础强化人教版8年级数学上册《全等三角形》同步训练试题(解析版)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学上册《全等三角形》同步训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,△ABC中,已知∠B=∠C,点E,F,P分别是AB,AC,BC上的点,且BE=CP,BP=CF,若∠A=112°,则∠EPF的度数是(

)A.34° B.36° C.38° D.40°2、如图,在△ABC和△DEF中,AB=DE,ABDE,运用“SAS”判定△ABC≌△DEF,需补充的条件是()A.AC=DF B.∠A=∠D C.BE=CF D.∠ACB=∠DFE3、如图,在ABC和BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于(

)A.∠EDB B.∠BED C.∠AFB D.2∠ABF4、如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:55、如图,已知.能直接判断的方法是(

)A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,已知,,,则等于________.2、如图,已知△ABC与△DEF全等,且∠A=72°、∠B=45°、∠E=63°、BC=10,EF=10,那么∠D=_____度.3、如图,在平面直角坐标系中,将沿轴向右平移后得到,点A的坐标为,点A的对应点在直线上,点在的角平分线上,若四边形的面积为4,则点的坐标为________.4、如图,点B、C、E三点在同一直线上,且AB=AD,AC=AE,BC=DE,若,则∠3=______°.5、如图,小明与小红玩跷跷板游戏,如果跷跷板的支点O(即跷跷板的中点)至地面的距离是50cm,当小红从水平位置CD下降30cm时,这时小明离地面的高度是___cm.三、解答题(5小题,每小题10分,共计50分)1、(2019秋•九龙坡区校级月考)如图.在四边形ABCD中,∠B+∠ADC=180°,AB=AD,E、F分别是边BC、CD延长线上的点,且∠EAF∠BAD,求证:EF=BE﹣FD.2、如图,在中,D是边上的点,,垂足分别为E,F,且.求证:.3、如图,在中,,,分别过点B,C向过点A的直线作垂线,垂足分别为点E,F.(1)如图①,过点A的直线与斜边BC不相交时,求证:①;②.(2)如图②,其他条件不变,过点A的直线与斜边BC相交时,若,,试求EF的长.4、如图,已知,,,求证:.5、(1)如图,在中,按以下步骤作图(保留作图痕迹):①以点为圆心,任意长为半径作弧,分别交、于点D、E.②分别以点D、E为圆心,大于的长为半径作弧,两弧交于点.③作射线交于点.则是的______线.(2)如果,,的面积为18.则的面积为______.-参考答案-一、单选题1、A【解析】【分析】由三角形内角和定理可得∠B=∠C=34°,由△EBP≌△PCF可得∠EPB=∠PFC,再由三角形外角的性质便可解答;【详解】解:△BAC中,∠B=∠C,∠A=112°,则∠B=∠C=34°,△EBP和△PCF中:BE=CP,∠EBP=∠PCF,BP=CF,∴△EBP≌△PCF(SAS),∴∠EPB=∠PFC,∵∠BPF=∠EPB+∠EPF=∠C+∠PFC,∴∠EPF=∠C=34°,故选:A.【考点】本题考查了三角形内角和定理,全等三角形的判定和性质,三角形外角的性质;掌握全等三角形的判定定理和性质是解题关键.2、C【解析】【分析】证出∠ABC=∠DEF,由SAS即可得出结论.【详解】解:补充BE=CF,理由如下:∵AB∥DE,∴∠ABC=∠DEF,若要利用SAS判定,B、D选项不符合要求,若A:AC=DF,构成的是SSA,不能证明三角形全等,A选项不符合要求,C选项:BE=CF,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),故选:C.【考点】此题主要考查全等三角形的判定,解题的关键是熟知“SAS”的判定的特点.3、C【解析】【分析】根据全等三角形的判定与性质可得=,再根据三角形外角的性质即可求得答案.【详解】解:在和中,,,,是的外角,,∴,故选:C.【考点】本题考查了全等三角形的判定与性质以及三角形的外角性质,熟练掌握全等三角形的判定与性质是解决本题的关键.4、C【解析】【分析】过点作于点,作于点,作于点,先根据角平分线的性质可得,再根据三角形的面积公式即可得.【详解】解:如图,过点作于点,作于点,作于点,是的三条角平分线,,,故选:C.【考点】本题考查了角平分线的性质,熟练掌握角平分线的性质是解题关键.5、A【解析】【分析】根据三角形全等的判定定理解答.【详解】在△ABC和△DCB中,,∴(SAS),故选:A.【考点】此题考查全等三角形的判定定理:SSS、SAS、ASA、AAS、HL,根据已知条件找到全等所需的对应相等的边或角是解题的关键.二、填空题1、【解析】【分析】根据提示可找到一组公共边OP,从而根据SSS判定△POB≌△POA,根据全等三角形的性质即可得到结论.【详解】在和中,∵,,,,故答案为40°.【考点】本题考查了全等三角形的判定及性质,熟练掌握基本的性质和判定是正确解题的关键.2、【解析】【分析】△ABC中,根据三角形内角和定理求得∠C=63°,那么∠C=∠E.根据相等的角是对应角,相等的边是对应边得出△ABC≌△DFE,然后根据全等三角形的对应角相等即可求得∠D.【详解】解:在△ABC中,∵∠A=72°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=63°,∵∠E=63°,∴∠C=∠E.∵△ABC与△DEF全等,BC=10,EF=10,∴△ABC≌△DFE,∴∠D=∠A=72°,故答案为72.【考点】本题考查了全等三角形的性质;注意:题目条件中△ABC与△DEF全等,但是没有明确对应顶点.得出△ABC≌△DFE是解题的关键.3、【解析】【分析】先求出点坐标,由此可知平移的距离,根据四边形的面积为4,可求出点坐标和平移的方向、距离,则可求B′点坐标.【详解】解:∵沿轴向右平移后得到,∴点与点是纵坐标相同,是4,把代入中,得到,∴点坐标为(4,4),∴点是沿轴向右平移4个单位,过点作,,∵点在的角平分线上,且,四边形的面积为4,∴∴∴∴点坐标为(1,3),根据平移的性质可知点B也是向右平移4个单位得到.∵点(1,3),∴B′(5,3).故答案为:(5,3).【考点】本题主要考查了一次函数图象上点的坐标特征、平移性质,通过求平移后的坐标得到平移的距离是解决本题的的关键.4、47【解析】【分析】根据“边边边”证明,再根据全等三角形的性质可得∠ABC=∠1,∠BAC=∠2,然后利用三角形的一个外角等于与它不相邻的两个内角和求出∠3=∠1+∠2,然后求解即可.【详解】解:在△ABC和△ADE中,,∴(SSS),∴∠ABC=∠1,∠BAC=∠2,∴∠3=∠ABC+∠BAC=∠1+∠2,∵,∴,∴.故答案为:47.【考点】本题主要考查了全等三角形的判定与性质以及三角形的外角等于与它不相邻的两个内角和的性质,熟练掌握三角形全等的判定方法是解题关键.5、80【解析】【分析】根据题意可得:OF=OG,OC=OD,利用已知条件判断出△OFC≌△OGD,得到CF=DG,即可求出答案.【详解】∵O是FG和CD的中点∴OF=OG,OC=OD在△OFC和△OGD中∴△OFC≌△OGD(SAS)∴CF=DG又DG=30cm∴CF=DG=30cm∴小明离地面的高度=支点到地面的高度+CF=50+30=80cm故答案为80【考点】本题主要考查了三角形全等知识的应用,用数学方法解决生活中有关的实际问题,把实际问题转换成数学问题,用数学方法加以论证,最后进行求解,是一种十分重要的方法.三、解答题1、详见解析【解析】【分析】在BE上截取BG,使BG=DF,连接AG.根据SAS证明△ABG≌△ADF得到AG=AF,∠BAG=∠DAF,根据∠EAF∠BAD,可知∠GAE=∠EAF,可证明△AEG≌△AEF,EG=EF,那么EF=GE=BE﹣BG=BE﹣DF.【详解】证明:在BE上截取BG,使BG=DF,连接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.在△ABG和△ADF中,,∴△ABG≌△ADF(SAS),∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF∠BAD.∴∠GAE=∠EAF.在△AEG和△AEF中,,∴△AEG≌△AEF(SAS).∴EG=EF,∵EG=BE﹣BG∴EF=BE﹣FD.【考点】此题主要考查全等三角形的判定与性质,解题的关键是根据已知条件作出辅助线求解.2、见解析【解析】【分析】由得出,由SAS证明,得出对应角相等即可.【详解】证明:∵,∴.在和中,∴,∴.【考点】本小题考查垂线的性质、全等三角形的判定与性质、等基础知识,考查推理能力、空间观念与几何直观.3、(1)①见详解;②见详解;(2)7【解析】【分析】(1)①由条件可求得∠EBA=∠FAC,利用AAS可证明△ABE≌△CAF;②利用全等三角形的性质可得EA=FC,EB=FA,利用线段的和差可证得结论;(2)同(1)可证明△ABE≌△CAF,可证得EF=FA−EA,代入可求得EF的长.【详解】(1)证明:①∵BE⊥EF,CF⊥EF,∴∠AEB=∠CFA=90°,∴∠EAB+∠EBA=90°,∵∠BAC=90°,∴∠EAB+∠FAC=90°,∴∠EBA=∠FAC,在△AEB与△CFA中∵,∴△ABE≌△CAF(AAS),②∵△ABE≌△CAF,∴EA=FC,EB=FA,∴EF=AF+AE=BE+CF;(2)解:∵BE⊥AF,CF⊥AF∴∠AEB=∠CFA=90°∴∠EAB+∠EBA=90°∵∠BAC=90°∴∠EAB+∠FAC=90°∴∠EBA=∠FAC,在△AEB与△CFA中,∴△ABE≌△CAF(AAS),∴EA=FC,EB=FA,∴EF=FA−EA=EB−FC=10−3=7.【考点】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.4、证明见解析.【解析】【分析】利用SSS可证明△ABD≌△ACE,可得∠BAD=∠1,∠ABD=∠2,根据三角形外角的性质即可得∠3=∠BAD+∠ABD,即可得结论.【详解】在△ABD和△ACE中,,∴△ABD≌△ACE,∴∠BAD=∠1,∠ABD=∠2,∵∠3=∠BAD+∠ABD,∴∠3=∠1+∠2.【考点】本题考查全等三角形的判定与性质及三角形外角性质,熟练掌握判定定理及外角性质是解题关键.5、(1)角平分;(2)27【解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论