解析卷-北师大版9年级数学上册期末试题带答案详解(培优)_第1页
解析卷-北师大版9年级数学上册期末试题带答案详解(培优)_第2页
解析卷-北师大版9年级数学上册期末试题带答案详解(培优)_第3页
解析卷-北师大版9年级数学上册期末试题带答案详解(培优)_第4页
解析卷-北师大版9年级数学上册期末试题带答案详解(培优)_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北师大版9年级数学上册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题24分)一、单选题(6小题,每小题2分,共计12分)1、下列方程中,一定是关于x的一元二次方程的是(

)A. B.C. D.2、如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC−CF=2HE.其中正确的结论有(

)A.1个 B.2个 C.3个 D.4个3、下列一元二次方程中,有两个不相等实数根的是(

)A. B.x2+2x+4=0 C.x2-x+2=0 D.x2-2x=04、已知是方程的一个解,则的值为(

)A.10 B.-10 C.2 D.-405、已知点都在反比例函数的图象上,且,则下列结论一定正确的是(

)A. B. C. D.6、一元二次方程(m+1)x2-2mx+m2-1=0有两个异号根,则m的取值范围是(

)A.m<1 B.m<1且m≠-1C.m>1 D.-1<m<1二、多选题(6小题,每小题2分,共计12分)1、如图,正方形ABCD中,CE平分∠ACB,点F在边AD上,且AF=BE.连接BF交CE于点G,交AC于点M,点P是线段CE上的动点,点N是线段CM上的动点,连接PM,PN.下列四个结论一定成立的是(

)A.CE⊥BF B.BE=AM C.AE+FM=AB D.PM+PN≥AC2、如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论,其中正确的结论是()A.AC=FG B.S△FAB:S四边形CBFG=1:2 C.∠ABC=∠ABF D.AD2=FQ•AC3、如图,已知等边三角形ABC的边长为2,DE是它的中位线.则下面四个结论中正确的有()A.DE=1 B.AB边上的高为C.△CDE∽△CAB D.△CDE的面积与△CAB面积之比为1:44、在直角坐标系中,已知点A(6,﹣3),以原点O为位似中心,相似比为,把线段OA缩小为OA′,则点A′的坐标为(

)A.(﹣2,﹣1) B.(﹣2,1) C.(2,1) D.(2,﹣1)5、已知两个直角三角形的三边长分别为3,4,m和6,8,n,且这两个直角三角形不相似,则m+n的值为(

).A.5+2B.15C.10+D.15+36、不能说明△ABC∽△A’B’C’的条件是(

)A.或 B.且C.且 D.且第Ⅱ卷(非选择题76分)三、填空题(8小题,每小题2分,共计16分)1、一个正方形的面积为,则它的对角线长为________.2、如图,四边形ABCD是一个正方形,E是BC延长线上一点,且AC=EC,则∠DAE的度数为_________.3、如图,在平行四边形中,点在边上,,连接交于点,则的面积与四边形的面积之比为___

4、如图,矩形的两边,的长分别为3、8,E是的中点,反比例函数的图象经过点E,与交于点F.若,则反比例函数的表达式为______.5、如图,正方形ABCD的边长为6,点E在边CD上.以点A为中心,把△ADE顺时针旋转90°至△ABF的位置.若DE=2,则FE=___.6、在等腰△ABC中,AB=AC,AD⊥BC于D,G是重心,若AG=9cm,则GD=_______cm.7、若m,n是关于x的方程x2-3x-3=0的两根,则代数式m2+n2-2mn=_____.8、你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程即为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程的正确构图是_____.(只填序号)四、解答题(6小题,每小题10分,共计60分)1、已知关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程的两个实数根都为正整数,求这个方程的根.2、圆周率是无限不循环小数.历史上,祖冲之、刘徽、韦达、欧拉等数学家都对有过深入的研究.目前,超级计算机已计算出的小数部分超过31.4万亿位.有学者发现,随着小数部分位数的增加,0~9这10个数字出现的频率趋于稳定,接近相同.

(1)从的小数部分随机取出一个数字,估计数字是6的概率为________;(2)某校进行校园文化建设,拟从以上4位科学家的画像中随机选用2幅,求其中有一幅是祖冲之的概率.(用画树状图或列表方法求解)3、如图所示,直线y=x+2与坐标轴交于A、B两点,与反比例函数y=(x>0)交于点C,已知AC=2AB.(1)求反比例函数解析式;(2)若在点C的右侧有一平行于y轴的直线,分别交一次函数图象与反比例函数图象于D、E两点,若CD=CE,求点D坐标.4、如图,四边形ABCD是正方形,点E在BC延长线上,DF⊥AE于点F,点G在AE上,且∠ABG=∠E.求证:AG=DF.5、水果批发市场有一种高档水果,如果每千克盈利(毛利)10元,每天可售出600kg.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20kg.(1)若以每千克能盈利17元的单价出售,求每天的总毛利润为多少元;(2)现市场要保证每天总毛利润为7500元,同时又要使顾客得到实惠,求每千克应涨价多少元;(3)现需按毛利润的10%缴纳各种税费,人工费每日按销售量每千克支出1.5元,水电房租费每日300元.若每天剩下的总纯利润要达到6000元,求每千克应涨价多少元.6、已知关于x的一元二次方程有两个相等的实数根,求的值.-参考答案-一、单选题1、B【解析】【分析】根据一元二次方程的概念(只含一个未知数,并且含有未知数的项的次数最高为2次的整式方程是一元二次方程)逐一进行判断即可得.【详解】解:A、,当时,不是一元二次方程,故不符合题意;B、,是一元二次方程,符合题意;C、,不是整式方程,故不符合题意;D、,整理得:,不是一元二次方程,故不符合题意;故选:B.【考点】本题考查了一元二次方程的定义,熟练掌握其定义是解题的关键.2、D【解析】【分析】①根据角平分线的定义可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AE=AB,从而得到AE=AD,然后利用“角角边”证明△ABE和△AHD全等,根据全等三角形对应边相等可得BE=DH,再根据等腰三角形两底角相等求出∠ADE=∠AED=67.5°,根据平角等于180°求出∠CED=67.5°,从而判断出①正确;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根据等角对等边可得OE=OD=OH,判断出②正确;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角边角”证明△BEH和△HDF全等,根据全等三角形对应边相等可得BH=HF,判断出③正确;④根据全等三角形对应边相等可得DF=HE,然后根据HE=AE-AH=BC-CD,BC-CF=BC-(CD-DF)=2HE,判断出④正确.【详解】解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,在△ABE和△AHD中,,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°-45°)=67.5°,∴∠CED=180°-45°-67.5°=67.5°,∴∠AED=∠CED,故①正确;∵AB=AH,∵∠AHB=(180°-45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°-67.5°=22.5°,∠ODH=67.5°-45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°-67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;∵HE=AE-AH=BC-CD,∴BC-CF=BC-(CD-DF)=BC-(CD-HE)=(BC-CD)+HE=HE+HE=2HE.故④正确;综上所述,结论正确的是①②③④共4个.故选:D.【考点】本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.3、D【解析】【分析】逐一分析四个选项中方程的根的判别式的符号,由此即可得出结论.【详解】A.此方程判别式,方程有两个相等的实数根,不符合题意;B.此方程判别式方程没有实数根,不符合题意;C.此方程判别式,方程没有实数根,不符合题意;D.此方程判别式,方程有两个不相等的实数根,符合题意;故答案为:D.【考点】此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.4、B【解析】【分析】将a代入方程得到,再将其整体代入所求代数式即可得解.【详解】∵a是方程的一个解,∴有,即,,∴,故选:B.【考点】本题考查了一元二次方程的解的定义,此类题的特点是利用方程的解的定义找到相等关系,再将其整体代入所求代数式,即可快速作答,盲目解一元二次方程求a值再代入计算,此方法耗时费力不可取.5、C【解析】【分析】根据反比例函数的性质,可得答案.【详解】反比例函数中,=-2020<0,图象位于二、四象限,∵a<0,∴P(a,m)在第二象限,∴m>0;∵b>0,∴Q(b,n)在第四象限,∴n<0.∴n<0<m,即m>n,故选:C.【考点】本题考查了反比例函数的性质,利用反比例函数的性质:k<0时,图象位于二四象限是解题关键.6、B【解析】【分析】设方程两根为x1,x2,根据一元二次方程的定义和根与系数的关系求解即可.【详解】解:设方程两根为x1,x2,根据题意得m+1≠0,,解得m<1且m≠-1,∵x1•x2<0,∴Δ>0,∴m的取值范围为m<1且m≠-1.故选:B.【考点】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2-4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.也考查了一元二次方程根与系数的关系.二、多选题1、ABD【解析】【分析】由SAS可证△BAF≌△CBE,进而可证EG⊥BG,即CE⊥BF,故A正确;根据ASA可证△BCG≌△MCG,知∠CBG=∠CMG,因为∠CBG=∠AFM,∠AMF=∠CMG,可得∠AFM=∠AMF,即AM=AF,可证BE=AM,故B正确;因AB=AE+BE=AE+AM,故C不正确;当PN⊥MC时,PM+PN=BP+PN=BN最短,此时BN为△ABC底边AC上的高,则BN的长度为PM+PN的最小值,根据正方形的性质知,BN==BD=AC,因此PM+PN≥AC,故D正确.【详解】解:∵四边形ABCD是正方形∴AB=BC,∠BAF=∠CBE=90°在△BAF和△CBE中∴△BAF≌△CBE(SAS)∴∠BAF=∠ECB∵∠CBE=90°∴∠BEC+∠BCE=90°∴∠BEC+∠FBA=90°∴∠BGE=180°-(∠BEC+∠FBA)=90°∴EG⊥BG,即CE⊥BF,故A正确;∵CE平分∠ACB∴∠BCE=∠MCG∵CE⊥BF∴∠MGC=∠BGC=90°在△BCG和△MCG中∴△BCG≌△MCG(ASA)∴∠CBG=∠CMG∵正方形ABCD∴AD∥BC∴∠CBG=∠AFM∵∠AMF=∠CMG∴∠AFM=∠AMF∴AM=AF∵AF=BE∴BE=AM,故B正确;∵AB=AE+BE,BE=AM∴AE+AM=AB,故C不正确;连接BP,如图,∵△BCG≌△MVG∴BG=GM∵CE⊥BF∴CG垂直平分BM∴MP=BP当PN⊥MC时,PM+PN=BP+PN=BN最短,此时BN为△ABC底边AC上的高,则BN的长度为PM+PN的最小值,根据正方形的性质知,BN==BD=AC∴PM+PN≥AC,故D正确综上所述,一定成立的是ABD,故选:ABD.【考点】本题考查了全等三角形的判定与性质,正方形的性质,线段的垂直平分线,解题的关键是熟练掌握全等三角形的判定与性质.2、ABCD【解析】【分析】根据正方形的性质及垂直的定义证明△CAD≌△GFA,即可判断A选项;证明四边形CBFG是矩形,由此判断B选项;根据矩形的性质及等腰直角三角形的性质即可判断C选项;证明△CAD∽△EFQ,即可判断D选项.【详解】解:∵四边形ADEF为正方形,∴,∴,∵FG⊥CA,∴,∴,∴,∴△CAD≌△GFA,∴AC=FG,故A选项正确;∵,∴GF∥BC,∵CB=CA,CA=GF,∴GF=BC,∴四边形CBFG是平行四边形,∵,∴四边形CBFG是矩形,∴S△FAB:S四边形CBFG=1:2,故B选项正确;∵四边形CBFG是矩形,∴,∵CB=CA,∠ACB=90°,∴,∴,故C选项正确;∵四边形ADEF为正方形,∴,AD=EF,∴,∵四边形CBFG是矩形,∴,∴,∴,∵,∴,∵,∴△CAD∽△EFQ,∴,∵AD=EF,∴AD2=FQ•AC,故D选项正确;故选:ABCD.【考点】此题考查矩形的判定及性质,等腰直角三角形的性质,正方形的性质,全等三角形的判定及性质,相似三角形的判定及性质,熟记各知识点并熟练应用解决问题是解题的关键.3、ABCD【解析】【分析】根据图形,利用三角形中位线定理,可得DE=1,A成立;AB边上的高,可利用勾股定理求出等于,B成立;DE是△CAB的中位线,可得DE∥AB,利用平行线分线段成比例定理的推论,可得△CDE∽△CAB,C成立;由△CDE∽△CAB,且相似比等于1:2,那么它们的面积比等于相似比的平方,就等于1:4,D也成立.【详解】解:∵DE是它的中位线,∴DE=AB=1,故A正确,∴DE∥AB,∴△CDE∽△CAB,故C正确,∴S△CDE:S△CAB=DE2:AB2=1:4,故D正确,∵等边三角形的高=,故B正确.故选ABCD.【考点】本题利用了:1、三角形中位线的性质;2、相似三角形的判定:一条直线与三角形一边平行,则它所截得三角形与原三角形相似;3、相似三角形的面积等于对应边的比的平方;4、等边三角形的高=边长×sin60°.4、BD【解析】【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k解答.【详解】解:∵点A的坐标为(−6,3),以原点为位似中心将△ABO缩小,位似比为,∴点A的对应点的坐标为:(−6×,3×)或(−6×(−),3×(−)),即(−2,1)或(2,−1),故选:BD.【考点】本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.5、AC【解析】【分析】根据相似三角形的性质、分情况计算即可.【详解】解:当3,4为直角边,6,8也为直角边时,此时两三角形相似;当三边分别为3,4,,和6,8,2,此时两三角形相似;当3,4为直角边时,m=5;则8为另一三角形的斜边,其直角边为:n==2,故m+n=5+2;当6,8为直角边,n=10;则4为另一三角形的斜边,其直角边为:m==,故m+n=10+;综上所述:m+n的值为5+2或10+,故选:A、C.【考点】本题主要考查了勾股定理以及相似三角形的性质,在直角三角形中对未知边是直角边还是斜边进行不同情况的讨论是解题的关键.6、ABD【解析】【分析】根据相似三角形的判定方法求解即可.【详解】解:A、或,不能判定,符合题意;B、且,不能判定,符合题意;C、且,能判定,不符合题意;D、且,不能判定,符合题意.故选:ABD.【考点】此题考查了相似三角形的判定方法,解题的关键是熟练掌握相似三角形的判定方法.相似三角形的判定方法:两边对应成比例且夹角相等的两个三角形相似;三边对应成比例的两个三角形相似;两角对应相等的两个三角形相似.三、填空题1、【解析】【分析】根据正方形的面积求得正方形的边长,再由勾股定理求得正方形的对角线长即可.【详解】∵正方形的面积为,∴正方形的边长为9cm,∴正方形对角线的长为.故答案为.【考点】本题考查了正方形的性质,熟知正方形的性质是解决问题的关键.2、22.5°【解析】【分析】由四边形ABCD是一个正方形,根据正方形的性质,可得∠ACB=45°,又由AC=EC,根据等边对等角,可得∠E=∠CAE,继而根据等腰三角形的性质和三角形的内角和求得∠EAC的度数,进一步即可求得∠DAE的度数.【详解】解:∵四边形是正方形,∴,∴,又∵,∴,则.故答案为:22.5°【考点】此题考查了正方形的性质以及等腰三角形的性质.此题比较简单,注意掌握数形结合思想的应用.3、【解析】【分析】由DE:EC=3:1,可得DF:FB=3:4,根据在高相等的情况下三角形面积比等于底边的比,可得S△EFD:S△BEF=3:4,S△BDE:S△BEC=3:1,可求△DEF的面积与四边形BCEF的面积的比值.【详解】解:连接BE∵DE:EC=3:1∴设DE=3k,EC=k,则CD=4k∵ABCD是平行四边形∴AB∥CD,AB=CD=4k,∴,∴S△EFD:S△BEF=3:4∵DE:EC=3:1∴S△BDE:S△BEC=3:1设S△BDE=3a,S△BEC=a则S△EFD=,,S△BEF=,∴SBCEF=S△BEC+S△BEF=,∴则△DEF的面积与四边形BCEF的面积之比9:19故答案为:.【考点】本题考查了平行线分线段成比例,平行四边形的性质,关键是运用在高相等的情况下三角形面积比等于底边的比求三角形的面积比值.4、【解析】【分析】利用勾股定理计算出,则,设,则,,,利用反比例函数图象上点的坐标特征得到,解得,所以,即可求出的值,从而得到反比例函数的表达式.【详解】解:如图连接AE,∵矩形的两边,的长分别为3、8,E是的中点,,,,设,则,是的中点,,,,在反比例函数的图象上,,解得,,,反比例函数的表达式是.故答案为.【考点】本题考查了待定系数法求反比例函数的解析式、反比例函数图象上点的坐标特征、矩形的性质、勾股定理的应用,表示出点的坐标是解题的关键.5、【解析】【分析】由旋转的性质可得BF=DE=2,∠D=∠ABF=90°,在直角△EFC中,由勾股定理可求解.【详解】解:∵把△ADE顺时针旋转90°得△ABF,∴BF=DE=2,∠D=∠ABF=90°,∴∠ABC+∠ABF=180°,∴点F,点B,点C共线,在直角△EFC中,EC=6-2=4,CF=BC+BF=8.根据勾股定理得:EF=,故答案为:.【考点】本题考查了旋转的性质,正方形的性质,勾股定理,灵活运用这些性质解决问题是本题的关键.6、4.5【解析】【分析】由三角形的重心的性质即可得出答案.【详解】解:∵AB=AC,AD⊥BC于D,∴AD是△ABC的中线,∵G是△ABC的重心,∴AG=2GD,∵AG=9cm,∴GD=4.5cm,故答案为:4.5.【考点】本题考查了三角形的重心,三角形三条中线的交点叫做三角形的重心,三角形的重心到一个顶点的距离等于它到对边中点距离的两倍.7、21【解析】【分析】先根据根与系数的关系得到m+n=3,mn=﹣3,再根据完全平方公式变形得到m2+n2﹣2mn=(m+n)2﹣4mn,然后利用整体代入的方法计算.【详解】解:∵m,n是关于x的方程x2-3x-3=0的两根,∴m+n=3,mn=﹣3,∴m2+n2﹣2mn=(m+n)2﹣4mn=32﹣4×(﹣3)=21.故答案为:21.【考点】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2,x1x2.8、②【解析】【分析】仿造案例,构造面积是的大正方形,由它的面积为,可求出,此题得解.【详解】解:即,构造如图②中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得.故答案为②.【考点】本题考查了一元二次方程的应用,仿造案例,构造出合适的大正方形是解题的关键.四、解答题1、证明见祥解;.【解析】【分析】(1)先求出判别式,再配方变为即可;(2)用十字相乘法可以求出根的表达式,方程的两个实数根都为正整数,列不等式组,即可得出m的值.【详解】证明:∵是关于的一元二次方程,,∴此方程总有两个实数根.解:∵,∴,∴,.∵方程的两个实数根都为正整数,,解得,,∴..【考点】本题考查了根的判别式,配方为平方式,根据方程的两个实数根都为正整数,列出不等式组,求出是解题的关键.2、(1);(2)见解析,【解析】【分析】(1)这个事件中有10种等可能性,其中是6的有一种可能性,根据概率公式计算即可;(2)画出树状图计算即可.【详解】(1)∵这个事件中有10种等可能性,其中是6的有一种可能性,∴数字是6的概率为,故答案为:;(2)解:画树状图如图所示:∵共有12种等可能的结果,其中有一幅是祖冲之的画像有6种情况.∴(其中有一幅是祖冲之).【考点】本题考查了概率公式计算,画树状图或列表法计算概率,熟练掌握概率计算公式,准确画出树状图或列表是解题的关键.3、(1)y=;(2)D(6,8).【解析】【分析】(1)作CM⊥y轴于M,如图,利用直线解析式确定A(0,2),B(﹣2,0),再根据平行线分线段成比例定理求出MC=4,AM=4,则C(4,6),然后把C点坐标代入y=中求出k得到反比例函数解析式;(2)MC交直线DE于N,如图,证明△CND为等腰直角三角形得到CN=DN,再利用CD=CE得到CN=NE=DN,设CN=t,则N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),然后把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,最后解方程求出t得到D点坐标.【详解】解:(1)作CM⊥y轴于M,如图,当x=0时,y=x+2=2,则A(0,2),当y=0时,x+2=0,解得x=﹣2,则B(﹣2,0),∵MC∥OB,∴===2,∴MC=2OB=4,AM=2OA=4,∴C(4,6),把C(4,6)代入y=得k=4×6=24,∴反比例函数解析式为y=;(2)MC交直线DE于N,如图,∵MC=MA,∴△MAC为等腰直角三角形,∴∠ACM=45

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论