




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学下册《平行四边形》专题攻克考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、顺次连接矩形各边中点得到的四边形是()A.平行四边形 B.矩形 C.菱形 D.正方形2、如图,已知四边形ABCD和四边形BCEF均为平行四边形,∠D=60°,连接AF,并延长交BE于点P,若AP⊥BE,AB=3,BC=2,AF=1,则BE的长为()A.5 B.2 C.2 D.33、下列条件中,能判定四边形是正方形的是()A.对角线相等的平行四边形 B.对角线互相平分且垂直的四边形C.对角线互相垂直且相等的四边形 D.对角线相等且互相垂直的平行四边形4、在△ABC中,AD是角平分线,点E、F分别是线段AC、CD的中点,若△ABD、△EFC的面积分别为21、7,则的值为()A. B. C. D.5、直角三角形的两条直角边分别为5和12,那么这个三角形的斜边上的中线长为()A.6 B.6.5 C.10 D.13第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,在正方形ABCD中,AB=2,取AD的中点E,连接EB,延长DA至F,使EF=EB,以线段AF为边作正方形AFGH,点H在线段AB上,则的值是_____.2、如图,菱形ABCD的对角线AC,BD相交于点O,E为DC的中点,若,则菱形的周长为__________.3、如图,菱形ABCD的两条对角线长分别为AC=6,BD=8,点P是BC边上的一动点,则AP的最小值为__.4、如图,直线l经过正方形ABCD的顶点B,点A,C到直线l的距离分别是1,3,则正方形ABCD的面积是_____.5、如图,在矩形ABCD中,对角线AC,BD相交于O,EF过点O分别交AB,CD于E,F,已知AB=8cm,AD=5cm,那么图中阴影部分面积为_____cm2.三、解答题(5小题,每小题10分,共计50分)1、如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F,连接AC、BE.(1)求证:四边形ABEC是平行四边形;(2)若∠AFC=2∠ADC,求证:四边形ABEC是矩形.2、如图,等腰△ABC中,AB=AC,∠BAC=90°,BE平分∠ABC交AC于E,过C作CD⊥BE于D,(1)如图1,求证:CD=BE(2)如图2,过点A作AF⊥BE,写出AF,BD,CD之间的数量关系并说明理由.3、如图所示,在△ABC中,AD是边BC上的高,CE是边AB上的中线,G是CE的中点,AB=2CD,求证:DG⊥CE.
4、如图,∠ACB=90°,CD⊥AB于点D,AF平分∠CAB交CD于点E,交BC于点F,作EG∥AB交CB于点G.(1)求证:△CEF是等腰三角形;(2)求证:CF=BG;(3)若F是CG的中点,EF=1,求AB的长.5、如图,△AOB是等腰直角三角形.(1)若A(﹣4,1),求点B的坐标;(2)AN⊥y轴,垂足为N,BM⊥y轴,垂足为点M,点P是AB的中点,连PM,求∠PMO度数;(3)在(2)的条件下,点Q是ON的中点,连PQ,求证:PQ⊥AM.
-参考答案-一、单选题1、C【解析】【分析】如图,矩形中,利用三角形的中位线的性质证明,再证明四边形是平行四边形,再证明从而可得结论.【详解】解:如图,矩形中,分别为四边的中点,,四边形是平行四边形,四边形是菱形.故选C.【点睛】本题考查的是矩形的性质,菱形的判定,三角形的中位线的性质,熟练的运用三角形的中位线的性质解决中点四边形问题是解本题的关键.2、D【解析】【分析】过点D作DH⊥BC,交BC的延长线于点H,连接BD,DE,先证∠DHC=90º,再证四边形ADEF是平行四边形,最后利用勾股定理得出结果.【详解】过点D作DH⊥BC,交BC的延长线于点H,连接BD,DE,∵四边形ABCD是平行四边形,AB=3,∠ADC=60º,∴CD=AB=3,∠DCH=∠ABC=∠ADC=60º,∵DH⊥BC,∴∠DHC=90º,∴∠ADC+∠CDH=90°,∴∠CDH=30°,在Rt△DCH中,CH=CD=,DH=,∴,∵四边形BCEF是平行四边形,∴AD=BC=EF,AD∥EF,∴四边形ADEF是平行四边形,∴AF∥DE,AF=DE=1,∵AF⊥BE,∴DE⊥BE,∴,∴,故选D.【点睛】本题考查了平行四边形的判定与性质,勾股定理,解题的关键是熟练运用这些性质解决问题.3、D【解析】【分析】根据正方形的判定定理进行判断即可.【详解】解:A、对角线相等的平行四边形是矩形,不符合题意;B、对角线互相平分且垂直的四边形是菱形,不符合题意;对角线相等且互相垂直的平行四边形是正方形,故C选项不符合题意;D选项符合题意;故选:D.【点睛】本题考查了正方形的判定,熟知正方形的判定定理是解本题的关键.4、B【解析】【分析】过点A作△ABC的高,设为x,过点E作△EFC的高为,可求出,,再由点E、F分别是线段AC、CD的中点,可得出,进而求出,再利用角平分线的性质可得出的值为即可求解.【详解】解:过点A作△ABC的高,设为x,过点E作△EFC的高为,∴,∴,,∵点E、F分别是线段AC、CD的中点,∴,∴,∵,∴,∴,过点D作DM⊥AB,DN⊥AC,∵AD为平分线,∴DM=DN,∵,∴,即:∴,故选:B.【点睛】本题考查角平分线性质定理及三角形中位线的性质,解题关键是求出.5、B【解析】【分析】根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【详解】解:∵直角三角形两直角边长为5和12,∴斜边=,∴此直角三角形斜边上的中线的长==6.5.故选:B.【点睛】本题主要考查勾股定理及直角三角形斜边中线定理,熟练掌握勾股定理及直角三角形斜边中线定理是解题的关键.二、填空题1、【解析】【分析】设,由正方形的性质和勾股定理求出的长,可得的长,再求出的长,得出的长,进而可得结果.【详解】解:设,四边形为正方形,,,点为的中点,,,,,四边形为正方形,,,故答案为:.【点睛】本题考查了正方形的性质以及勾股定理,解题的关键是熟练掌握正方形的性质,由勾股定理求出的长.2、16【解析】【分析】由菱形的性质和三角形中位线定理即可得菱形的边长,从而可求得菱形的周长.【详解】∵四边形ABCD是菱形,且对角线相交于点O∴点O是AC的中点∵E为DC的中点∴OE为△CAD的中位线∴AD=2OE=2×2=4∴菱形的周长为:4×4=16故答案为:16【点睛】本题考查了菱形的性质及三角形中位线定理、菱形周长等知识,掌握这些知识是解答本题的关键.3、4.8【解析】【分析】由垂线段最短,可得AP⊥BC时,AP有最小值,由菱形的性质和勾股定理可求BC的长,由菱形的面积公式可求解.【详解】设AC与BD的交点为O,∵点P是BC边上的一动点,∴AP⊥BC时,AP有最小值,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=AC=3,BO=DO=BD=4,∴,∵,∴,故答案为:4.8.【点睛】本题考查了菱形的性质,勾股定理,确定当AP⊥BC时,AP有最小值是本题关键.4、10【解析】【分析】根据正方形的性质,结合题意易求证,,,即可利用“ASA”证明,得出.最后根据勾股定理可求出,即正方形的面积为10.【详解】∵四边形ABCD是正方形,∴,,∴.根据题意可知:,,∴,,∴在和中,,∴,∴.∵在中,,∴正方形ABCD的面积是10.故答案为:10.【点睛】本题考查正方形的性质,全等三角形的判定和性质以及勾股定理.利用数形结合的思想是解答本题的关键.5、10【解析】【分析】利用矩形性质,求证,将阴影部分的面积转为的面积,最后利用中线平分三角形的面积,求出的面积,即可得到阴影部分的面积.【详解】解:四边形为矩形,,,,,在与中,,阴影部分的面积最后转化为了的面积,中,,平分,阴影部分的面积:,故答案为:10.【点睛】本题主要是考查了矩形的性质以全等三角形的判定与性质以及中线平分三角形面积,熟练利用矩形性质,证明三角形全等,将阴影部分面积转化为其他图形的面积,这是解决本题的关键.三、解答题1、(1)证明见解析;(2)证明见解析;【分析】(1)根据平行四边形的性质得到,AB=CD,然后根据CE=DC,得到AB=EC,,利用“一组对边平行且相等的四边形是平行四边形”判断即可;(2)由(1)得的结论得四边形ABEC是平行四边形,再通过角的关系得出FA=FE=FB=FC,AE=BC,可得结论.【详解】证明:(1)∵四边形ABCD是平行四边形,∴,AB=CD,∵CE=DC,∴AB=EC,,∴四边形ABEC是平行四边形;(2)∵由(1)知,四边形ABEC是平行四边形,∴FA=FE,FB=FC.∵四边形ABCD是平行四边形,∴∠ABC=∠D.又∵∠AFC=2∠ADC,∴∠AFC=2∠ABC.∵∠AFC=∠ABC+∠BAF,∴∠ABC=∠BAF,∴FA=FB,∴FA=FE=FB=FC,∴AE=BC,∴四边形ABEC是矩形.【点睛】本题考查的是平行四边形的判定与性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形,再通过角的关系证矩形.2、(1)证明见解析;(2)BD=CD+2AF,理由见解析【分析】(1)延长BA与CD的延长线交于点G,先证明△ABE≌△ACG得到BE=CG,由BD是∠ABC的角平分线,得到∠GBD=∠CBD,即可证明△BDG≌△BDC得到CD=GD,则;(2)如图所示,连接AD,取BE中点H,连接AH,由直角三角形斜边上的中线等于斜边的一半可得,,则,再由∠BAC=90°,AB=AC,得到∠ABC=45°,根据BD平分∠ABC,即可推出∠AHF=∠ABH+∠BAH=45°,从而得到AF=HF,则DH=2AF,由此即可推出BD=BH+HD=BH+2AF=CD+2AF.【详解】解:(1)如图所示,延长BA与CD的延长线交于点G,∵∠BAC=90°,∴∠CAG=90°,∵CD⊥BE,∴∠EDC=∠GDB=∠BAE=90°,又∵∠AEB=∠DEC,∴∠ABE=∠DCE,在△ABE和△ACG中,,∴△ABE≌△ACG(ASA),∴BE=CG,∵BD是∠ABC的角平分线,∴∠GBD=∠CBD,在△BDG和△BDC中,,∴△BDG≌△BDC(ASA),∴CD=GD,∴;(2)BD=CD+2AF,理由如下:如图所示,连接AD,取BE中点H,连接AH,由(1)得CD=GD,,∵△BAE和△CAG都是直角三角形,H为BE中点,D为CG中点,∴,,∴,∴∠ABH=∠BAH,∵∠BAC=90°,AB=AC,∴∠ABC=45°,又∵BD平分∠ABC,∴∠ABH=∠BAH=22.5°,∴∠AHF=∠ABH+∠BAH=45°,∵AF⊥DH,∴HF=DF,∠AFH=90°,∴∠HAF=45°,∴AF=HF,∴DH=2AF,∴BD=BH+HD=BH+2AF=CD+2AF.【点睛】.本题主要考查了全等三角形的性质与判定,角平分线的性质,等腰三角形的性质与判定,直角三角形斜边上的中线,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.3、见解析【分析】连接DE,根据直角三角形的性质得到DE=AB,再根据AB=2CD,得到CD=AB,从而可得CD=DE,根据等腰三角形的三线合一证明即可.【详解】证明:连接DE,如图:
∵AD是边BC上的高,CE是边AB上的中线,∴AD⊥BD,E是AB的中点,∴DE=AB,∵AB=2CD,∴CD=AB,∴CD=DE,∵G是CE的中点,∴DG⊥CE.【点睛】本题考查了直角三角形的性质、等腰三角形的判定和性质.解题的关键是掌握直角三角形的性质、等腰三角形的判定和性质,明确在直角三角形中,斜边上的中线等于斜边的一半.4、(1)见解析;(2)见解析;(3)【分析】(1)由余角的性质可得∠3=∠7=∠4,可得CE=CF,可得△CEF为等腰三角形;
(2)过E作EM∥BC交AB于M,得出平行四边形EMBG,推出BG=EM,由“AAS”可证△CAE≌△MAE,推出CE=EM,由三角形的面积关系可求GB的长;
(3)证明△CEF是等边三角形,求出BC,可得结论.【详解】(1)证明:过E作EM∥BC交AB于M,∵EG∥AB,∴四边形EMBG是平行四边形,∴BG=EM,∠B=∠EMD,∵CD⊥AB,∴∠ADC=∠ACB=90°,∴∠1+∠7=90°,∠2+∠3=90°,∵AE平分∠CAB,∴∠1=∠2,∵∠3=∠4,∴∠4=∠7,∴CE=CF,∴△CEF是等腰三角形;(2)证明:过E作EM∥BC交AB于M,则四边形EMBG是平行四边形,∴BG=EM,∵∠ADC=∠ACB=90°,∴∠CAD+∠B=90°,∠CAD+∠ACD=90°,∴∠ACD=∠B=∠EMD,∵在△CAE和△MAE中,∴△CAE≌△MAE(AAS),∴CE=EM,∵CE=CF,EM=BG,∴CF=BG.(3)∵CD⊥AB,EG∥AB,∴EG⊥CD,∴∠CEG=90°,∵CF=FG,∴EF=CF=FG,∵CE=CF,∴CE=CF=EF=1,∴△CEF是等边三角形,∴∠ECF=60°,∴BC=3,∠B=30°,∴∴Rt△ABC中∴解得.【点睛】本题考查了平行四边形的性质和判定,三角形的内角和定理,全等三角形的性质和判定,等腰三角形的性质和判定等知识点,主要考查学生综合运用定理进行推理的能力,有一定的难度.5、(1)(1,4);(2)45°;(3)见解析
【分析】(1)过点A作AE⊥x轴于E,过点B作BF⊥x轴于F,证明△OAE≌△BOF得到OF=AE,BF=OE,再由点A的坐标为(-4,1),得到OF=AE=1,BF=OE=4,则点B的坐标为(1,4);(2)延长MP与AN交于H,证明△APH≌△BPM得到AH=BM,再由A点坐标为(-4,1),B点坐标为(1,4),得到AN=4,OM=4,BM=1,ON=1,则HN=AN-AH=AN-BM=3,MN=OM-ON=3,瑞出HN=MN,即可得到∠NHM=∠NMH=45°,即∠PMO=45°;(3)连接OP,AM,取BM中点G,连接GP,则GP是△ABM的中位线,AM∥GP,证明△PQO≌△PGB得到∠OPQ=∠BPG,再由∠OPQ+∠BPQ=90°,得到∠BPG+∠BPQ=90°,即∠GPQ=90°,则PQ⊥PG,即PG⊥AM;【详解】解:(1)如图所示,过点A作AE⊥x轴于E,过点B作BF⊥x轴于F,∴∠AEO=∠OFB=90°,∴∠AOE+∠OAE=90°,又∵∠AOB=90°,∴∠AOE+∠BOF=90°,∴∠OAE=∠BOF,∵AO=OB,∴△OAE≌△
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工地用水电合同范本
- 超市代理合同范本
- 房屋网络出售合同范本
- 合租档口合同范本
- 回扣采购汽车合同范本
- 工厂培训学徒合同范本
- 河南装饰设计合同范本
- 关于纸盒购销合同范本
- 2025年芜湖市沈巷中心小学顶岗教师招聘备考练习试题及答案解析
- 防水购销合同范本
- 人教版(2024)新教材三年级数学上册课件 1.2 观察物体(2)课件
- 颈椎骨折脊髓损伤的护理
- 华为海外税务管理办法
- 2025秋统编版小学道德与法治二年级上册教学设计(附目录)
- 2025年成人高考英语试题及答案
- 腱鞘炎个人护理
- 高渗盐水治疗脑水肿及颅内高压专家共识解读
- 《无人机地面站与任务规划》全套教学课件
- 乡村应急广播管理制度
- 歌词写作教学课件下载
- 2025-2030年中国无人机行业市场深度调研及前景趋势与投资战略研究报告
评论
0/150
提交评论