基础强化重庆市实验中学7年级下册数学期末考试章节测评练习题(含答案详解)_第1页
基础强化重庆市实验中学7年级下册数学期末考试章节测评练习题(含答案详解)_第2页
基础强化重庆市实验中学7年级下册数学期末考试章节测评练习题(含答案详解)_第3页
基础强化重庆市实验中学7年级下册数学期末考试章节测评练习题(含答案详解)_第4页
基础强化重庆市实验中学7年级下册数学期末考试章节测评练习题(含答案详解)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市实验中学7年级下册数学期末考试章节测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示折线统计图,则符合这一结果的试验最有可能的是()A.不透明袋中装有大小和质地都相同的1个红球和2个黄球,从中随机取一个,取到红球B.任意写一个整数,它能被2整除C.掷一枚正六面体的骰子,出现1点朝上D.先后两次掷一枚质地均匀的硬币,两次都出现反面2、下列事件为必然事件的是()A.明天是晴天 B.任意掷一枚均匀的硬币100次,正面朝上的次数是50次C.两个正数的和为正数 D.一个三角形三个内角和小于3、如图,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,则∠BAC的度数是()A.100° B.140° C.160° D.105°4、根据下列已知条件,能画出唯一的的是()A., B.,,C.,, D.,,5、下列关于圆的周长与半径之间的关系式中,说法正确的是()A.、是变量,是常量 B.、是变量,2是常量C.、是变量,2是常量 D.、是变量,是常量6、世纪花园居民小区收取电费的标准是0.6元/千瓦时,当用电量为x(单位:千瓦时)时,收取电费为y(单位:元).在这个问题中,下列说法中正确的是()A.x是自变量,0.6元/千瓦时是因变量B.y是自变量,x是因变量C.0.6元/千瓦时是自变量,y是因变量D.x是自变量,y是因变量,0.6元/千瓦时是常量.7、下列说法正确的是()A.“明天下雨的概率为99%”,则明天一定会下雨B.“367人中至少有2人生日相同”是随机事件C.抛掷10次硬币,7次正面朝上,则抛掷硬币正面朝上的概率为0.7.D.“抛掷一枚均匀的骰子,朝上的面点数为偶数”是随机事件8、如图,北京2022年冬奥会会徽,是将蒙汉两种文字的“冬”字融为一体而成.组成会徽的四个图案中是轴对称图形的是()A. B. C. D.9、下列图形中,是轴对称图形的是()A. B.C. D.10、小李骑车沿直线旅行,先前进了1000米,休息了一段时间,又原路返回800米,再前进1200米,则他离起点的距离与时间的关系示意图是()A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图是一个转盘,转盘上共有红、白两种不同的颜色,已知红色区域的圆心角为110°,自由转动转盘,指针落在白色区域的概率是__________.2、利用乘法公式解决下列问题:(1)若,,则;(2)已知,若满足,求值.3、如图,AB∥CD∥EF,若∠ABC=125°,∠CEF=105°,则∠BCE的度数为_____.4、如图所示,长方形的长和宽分别为8cm和6cm,剪去一个长为xcm(0<x<8)的小长方形(阴影部分)后,余下另个长方形的面积S(cm2)与x(cm)的关系式可表示为_____.5、在面积为120m²的长方形中,它的长(m)与宽(m)的函数解析式是______.6、如图,A,B在一水池的两侧,,,AC,BD交于点E,,若,则水池宽______m.7、如图,已知AO⊥OC,OB⊥OD,∠COD=42°,则∠AOB=__________.8、一个水库的水位在最近5h内持续上涨,下表记录了这5h内6个时间点的水位高度,其中t表示时间,y表示水位高度.t/h012345y/m33.33.63.94.24.5据估计这种上涨规律还会持续2h,预测再过2h水位高度将为________m.9、初一(2)班共有学生44人,其中男生有30人,女生14人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性______.(填“大”或“小”).10、如图,将一张长方形纸片ABCD沿EF折叠,点D、C分别落在点D′、C′的位置处,若∠1=58°,则∠EFB的度数是______.三、解答题(6小题,每小题10分,共计60分)1、2021秋开学为防控冠状病毒,学生进校园必须戴口置,测体温.某校开通了三条人工测体温的通道,每周一分别由王老师、张老师、李老师三位老师给进校园的学生测体温(每个通道一位老师),每名学生在3个通道中可随机选择其中的一个通过.若甲、乙两名同学周一不同时进入校园,解决以下问题:(1)求甲周一进校园由王老师测体温的概率;(2)求甲、乙周一进校园分别由不同老师测体温的概率.2、作图题:(1)如图,在11×11的正方形网格中,网格中有一个格点△ABC(即三角形的顶点都在格点上).①在图中作出△ABC关于直线l对称的△A1B1C1(要求A与A1,B与B1,C与C1相对应);②在直线l上找一点P,使得△PAC的周长最小;(2)在(1)问的结果下,连接BB1、CC1,求四边形BB1C1C的面积.3、根据下图回答问题:(1)上图表示的是哪两个变量之间的关系?哪个是自变量,哪个是因变量?(2)从图象中观察,哪一年的居民的消费价格最低?哪一年居民的消费价格最高?相差多少?(3)哪些年的居民消费价格指数与1989年的相当?(4)图中A点表示什么?(5)你能够大致地描述1986—2000年价格指数的变化情况吗?试试看.4、如图,在△ABC中,AB=AC,∠BAC=30°,点D是△ABC内一点,DB=DC,∠DCB=30°,点E是BD延长线上一点,AE=AB.(1)求∠ADB的度数;(2)线段DE,AD,DC之间有什么数量关系?请说明理由.(提示:在线段DE上截取线段EM=BD,连接线段AM或者在线段DE上截取线段DM=AD连接线段AM).5、已知:如图,AD是△ABC的角平分线,DE∥AC,DE交AB于点E,DF∥AB,DF交AC于点F.求证:DA平分∠EDF.6、已知AB∥CD,点E在AB上,点F在DC上,点G为射线EF上一点.(基础问题)如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分).证明:过点G作直线MN∥AB,又∵AB∥CD,∴MN∥CD()∵MN∥AB,∴∠A=()()∵MN∥CD,∴∠D=()∴∠AGD=∠AGM+∠DGM=∠A+∠D.(类比探究)如图2,当点G在线段EF延长线上时,直接写出∠AGD、∠A、∠D三者之间的数量关系.(应用拓展)如图3,AH平分∠GAB,DH交AH于点H,且∠GDH=2∠HDC,∠HDC=22°,∠H=32°,直接写出∠DGA的度数.-参考答案-一、单选题1、A【分析】根据频率图象可知某实验的频率约为0.33,依次求出每个事件的概率进行比较即可得到答案.【详解】解:A、不透明袋中装有大小和质地都相同的1个红球和2个黄球,从中随机取一个,取到红球的概率≈0.33,符合题意;B、任意写一个整数,它能2被整除的概率为,不符合题意;C、掷一个质地均匀的正六面体骰子,出现1点朝上的概率为≈0.17,不符合题意;D、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率是,不符合题意;故选:A.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.2、C【详解】解:A、“明天是晴天”是随机事件,此项不符题意;B、“任意掷一枚均匀的硬币100次,正面朝上的次数是50次”是随机事件,此项不符题意;C、“两个正数的和为正数”是必然事件,此项符合题意;D、“一个三角形三个内角和小于”是不可能事件,此项不符题意;故选:C.【点睛】本题考查了随机事件、必然事件和不可能事件,熟记随机事件的定义(在一定条件下,可能发生也可能不发生的事件称为随机事件)、必然事件的定义(发生的可能性为1的事件称为必然事件)和不可能事件的定义(发生的可能性为0的事件称为不可能事件)是解题关键.3、B【分析】根据方位角的含义先求解再利用角的和差关系可得答案.【详解】解:如图,标注字母,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,而故选B【点睛】本题考查的是角的和差关系,垂直的定义,方位角的含义,掌握“角的和差与方位角的含义”是解本题的关键.4、C【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【详解】解:A.∠C=90°,AB=6,不符合全等三角形的判定方法,即不能画出唯一三角形,故本选项不符合题意;B.,,,不符合全等三角形的判定定理,不能画出唯一的三角形,故本选项不符合题意;C.,,,符合全等三角形的判定定理ASA,能画出唯一的三角形,故本选项符合题意;D.3+4<8,不符合三角形的三边关系定理,不能画出三角形,故本选项不符合题意;故选:C.【点睛】此题主要考查了全等三角形的判定以及三角形三边关系,正确把握全等三角形的判定方法是解题关键.5、D【分析】根据变量和常量的定义判断即可.【详解】解:关于圆的周长与半径之间的关系式中,、是变量,是常量.故选:.【点睛】本题考查了变量和常量的定义,解题关键是明确变量和常量的定义,注意:是常量.6、D【分析】根据自变量、因变量和常量的定义逐项判断即得答案.【详解】解:A、x是自变量,0.6元/千瓦时是常量,故本选项说法错误,不符合题意;B、y是因变量,x是自变量,故本选项说法错误,不符合题意;C、0.6元/千瓦时是常量,y是因变量,故本选项说法错误,不符合题意;D、x是自变量,y是因变量,0.6元/千瓦时是常量,故本选项说法正确,符合题意.故选:D.【点睛】本题考查了自变量、因变量和常量的定义,属于基础知识题型,熟知概念是关键.7、D【分析】根据概率、随机事件和必然事件的定义逐项判断即可得.【详解】解:A、“明天下雨的概率为99%”,则明天不一定会下雨,原说法错误;B、“367人中至少有2人生日相同”是必然事件,则原说法错误;C、抛掷硬币要么正面朝上,要么正面朝下,则抛掷硬币正面朝上的概率为,则原说法错误;D、“抛掷一枚均匀的骰子,朝上的面点数为偶数”是随机事件,说法正确;故选:D.【点睛】本题考查了概率、随机事件和必然事件,掌握理解各概念是解题关键.8、D【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A不是轴对称图形,故本选项不合题意B不是轴对称图形,故本选项不合题意C不是轴对称图形,故本选项不合题意D是轴对称图形,故本选项符合题意故选D【点睛】本题考察了轴对称图形的概念,熟练掌握应用轴对称图形的定义解决问题是关键点.9、A【分析】根据轴对称图形的定义:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,进行判断即可.【详解】解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意;故选:A.【点睛】本题考查了轴对称图形的识别,熟记定义是解本题的关键.10、C【分析】根据休息时,离开起点的S不变,返回时S变小,再前进时S逐渐变大得出函数图象,然后选择即可.【详解】解:前进了1000米图象为一条线段,休息了一段时间,离开起点的不变,又原路返回800米,离开起点的变小,再前进1200米,离开起点的逐渐变大,纵观各选项图象,只有选项符合.故选:.【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.二、填空题1、【分析】先求出白色区域的圆心角,再利用概率公式即可求解.【详解】∵红色区域的圆心角为110°,∴白色区域的圆心角为250°,∴指针落在白色区域的概率=.故答案是:.【点睛】本题主要考查几何概率,掌握概率公式是解题的关键.2、(1)144;(2)255【分析】(1)根据完全平方公式的变形即可求解;(2)设,,由完全平方公式的变形即可求解.【详解】解:(1)由进行变形得,,∴=64+80=144;故答案为:144;(2)设,,由进行变形得,,∴.【点睛】此题主要考查乘法公式的应用,解题的关键是熟知完全平方公式的变形运用.3、50°【分析】由AB∥CD∥EF,得到∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,则∠ECD=180°-∠CEF=75°,由此即可得到答案.【详解】解:∵AB∥CD∥EF,∴∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,∴∠ECD=180°-∠CEF=75°,∴∠BCE=∠BCD-∠ECD=50°,故答案为:50°.【点睛】本题主要考查了平行线的性质,熟知平行线的性质是解题的关键.4、S=-6x+48【分析】先表示出新矩形的长,再求其面积.【详解】∵长方形的长和宽分别为8cm和6cm,剪去一个长为xcm(0<x<8)的小长方形(阴影部分)后,∴余下另一个长方形的面积S(cm2)与x(cm)的关系式可表示为:S=6(8-x).即S=-6x+48.故答案是:S=-6x+48.【点睛】考查了列函数关系式,解题关键是正确表示出新矩形的长,再根据面积公式得到关系式.5、【分析】根据长方形的面积公式可得,进而变形即可得y关于x的函数解析式.【详解】∵长方形的面积=长×宽,∴,∴.【点睛】本题考查用关系式法表示变量之间的关系.能利用矩形的面积公式中的等量关系列出关系式是解决此题的关键.6、80【分析】根据“”证明即可得出.【详解】解:∵,,∴,在和中,,∴,∵,∴,故答案为:.【点睛】本题考查了全等三角形的实际应用,熟练掌握全等三角形的判定定理以及性质定理是解本题的关键.7、138°【分析】根据垂直的定义得到∠AOC=∠DOB=90°,由互余关系得到∠BOC=90°-∠COD=90°-42°=48°,即可求出∠AOB.【详解】解:∵AO⊥OC,OB⊥OD,∴∠AOC=∠DOB=90°,又∵∠COD=42°,∴∠BOC=90°-∠COD=90°-42°=48°,∴∠AOB=∠AOC+∠BOC=90°+48°=138°.【点睛】本题考查了余角的概念:若两个角的和为90°,那么这两个角互余.8、5.1【分析】由题意可得到水位随时间上涨的速度,即可求出再过2h水位高度.【详解】由表格可知,每小时水库的水位上涨0.3m,所以2h水库的水位上涨m,m.故答案为:5.1.【点睛】此题考查了变量之间的关系,解题的关键是分析出题目中变量之间的关系.9、大【分析】分别求得找到男生和找到女生的概率即可比较出可能性的大小.【详解】解:∵初一(2)班共有学生44人,其中男生有30人,女生14人,∴找到男生的概率为:=,找到女生的概率为:=而∴找到男生的可能性大,故答案为:大【点睛】本题考查的是简单随机事件的概率,掌握“利用概率公式求解简单随机事件的概率”是解本题的关键,随机事件的概率等于符合条件的情况数除以所有的情况数.10、61°【分析】根据折叠性质得出∠DED′=2∠DEF,根据∠1的度数求出∠DED′,即可求出∠DEF的度数,进而得到答案.【详解】解:由翻折的性质得:∠DED′=2∠DEF,∵∠1=58°,∴∠DED′=180°-∠1=122°,∴∠DEF=61°,又∵AD∥BC,∴∠EFB=∠DEF=61°.故答案为:61°.【点睛】本题考查了平行线的性质,翻折变换的性质,邻补角定义的应用,熟记折叠的性质是解题的关键.三、解答题1、(1);(2)【分析】(1)直接根据概率公式求解即可;(2)根据题意画出树状图得出所有等情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.【详解】解:(1)共有三位老师测体温,分别是王老师、张老师、李老师所以由王老师测体温的概率是;(2)设王老师、张老师、李老师分别用A,B,C表示,画树状图如下:共有9种等可能的情况,其中都是甲、乙分别由不同老师测体温的有6种情况,所以,甲、乙分别由不同老师测体温的概率为=.【点睛】此题考查的是用树状图法求概率.树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.2、(1)①见解析;②见解析;(2)【分析】(1)①作关于直线l对称点,再顺次连接,则即为所求三角形;②连接,与交于点,则点即为所求;(2)根据网格的特点计算梯形BB1C1C的面积即可.【详解】(1)如图,①作关于直线l对称点,再顺次连接,则即为所求三角形;②连接,与交于点,则点即为所求;的周长当三点共线时,的周长最小(2)如图,连接BB1、CC1,BB1C1C的面积【点睛】本题考查了画轴对称图形,根据两点之间线段最短求最短距离作图,根据网格的特点求解是解题的关键.3、(1)图象表示的是我国居民消费价格指数与时间之间的关系.时间是自变量,居民消费价格指数是因变量;(2)1994年最高,1999年最低,相差25;(3)1993年和1995年;(4)1998年的居民消费价格指数约为101;(5)见解析【分析】(1)根据图象进行作答即可;(2)根据图象进行作答即可;(3)根据图象进行作答即可;(4)根据图象进行作答即可;(5)根据图象进行作答即可.【详解】(1)图象表示的是我国居民消费价格指数与时间之间的关系.时间是自变量,居民消费价格指数是因变量.(2)1994年最高,1999年最低,相差25.(3)1993年和1995年.(4)1998年的居民消费价格指数约为101.(5)1986年-1989年,居民的消费价格指数逐年呈上升趋势;1989年-1990年,居民的消费价格指数逐年呈下降趋势;1990年-1994年,居民的消费价格指数逐年呈上升趋势,并且在1994年达到最高消费水平;1994年-1999年,居民的消费价格指数逐年呈下降趋势,并且在1999年消费水平进入低谷;1999年-2000年,居民的消费价格指数逐年呈上升趋势;.【点睛】本题考查了图象与变量的问题,掌握图象与变量的关系是解题的关键.4、(1)∠ADB的度数为.(2),证明见解析.【分析】(1)利用已知条件,先证明,再通过全等三角形的性质,求解,最后利用三角形内角和为,即可求出∠ADB的度数.(2)在线段DE上截取线段DM=AD连接线段AM,证明,进而得到,最后即可证得结论成立.【详解】(1)解:,为等腰三角形,,,,,.,.在中,..(2)解:,证明:如图所示:在线段DE上截取线段DM=AD,并连接线段AM,,,是等边三角形,,,,,,,,,.【点睛】本题主要是考查了三角形的全等以及等腰三角形的性质,正确找到判定三角形全等的条件,并利用其性质证明角相等或边相等,是解决本题的关键,另外,证明边长之间的关系,一般会在较长的边上进行截取,这个做题技巧,需要注意.5、见解析【分析】根据角平分线的定义可得∠DAE=∠DAF,再根据两直线平行,内错角相等可得∠ADE=∠DAF,∠ADF=∠DAE,从而得解.【详解】解:∵DE∥AC,∴∠ADE=∠DAF,∵DF∥AB,∴∠ADF=∠DAE,又∵AD是△ABC的角平分线,∴∠DAE=∠DAF,∴∠ADE=∠ADF.DA平分∠EDF.【点睛】本题综合考查了平行线和角平分线的性质,注意等量代换的应用.6、基础问题:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:∠AGD=∠A-∠D;应用拓展:42°.【分析】基础问题:由MN∥AB,可得∠A=∠AGM,由MN∥CD,可得∠D=∠DGM,则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论