解析卷人教版8年级数学上册《轴对称》章节测试试题(详解版)_第1页
解析卷人教版8年级数学上册《轴对称》章节测试试题(详解版)_第2页
解析卷人教版8年级数学上册《轴对称》章节测试试题(详解版)_第3页
解析卷人教版8年级数学上册《轴对称》章节测试试题(详解版)_第4页
解析卷人教版8年级数学上册《轴对称》章节测试试题(详解版)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学上册《轴对称》章节测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、下列图案是几家银行的标志,其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个2、如图所示,在3×3的正方形网格中,已有三个小正方形被涂黑,将剩余的白色小正方形再任意涂黑一个,则所得黑色图案是轴对称图形的情况有()A.6种 B.5种 C.4种 D.2种3、下列电视台标志中是轴对称图形的是(

)A. B.C. D.4、如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1∶以C为圆心,CA为半径画弧①;步骤2∶以B为圆心,BA为半径画弧②,交弧①于点D;步骤3∶连接AD,交BC延长线于点H.下列叙述正确的是(

)A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC⋅AH D.AB=AD5、如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于

AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若AC=3,AB=5,则DE等于(

A.2 B. C. D.第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,在中,,以为边,作,满足,为上一点,连接,,连接.下列结论中正确的是________(填序号)①;②;③若,则;④.2、如图,分别以的边,所在直线为称轴作的对称图形和,,线段与相交于点O,连接、、、.有如下结论:①;②;③平分:④;③.其中正确的结论个数为______.3、如图,在中,,,AB的垂直平分线MN交AC于D点,连接BD,则的度数是________.4、如图,在中,的中垂线交于点,交于点,已知,的周长为22,则______.5、如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC=_______°.三、解答题(5小题,每小题10分,共计50分)1、如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D.(1)求∠ADC的度数;(2)求证:DC=2DB.2、如图,一张纸上有线段AB;(1)请用尺规作图,作出线段AB的垂直平分线(保留作图痕迹,不写作法和证明);(2)若不用尺规作图,你还有其它作法吗?请说明作法(不作图);3、(1)如图①,和都是等边三角形,且点,,在一条直线上,连结和,直线,相交于点.则线段与的数量关系为_____________.与相交构成的锐角的度数为___________.(2)如图②,点,,不在同一条直线上,其它条件不变,上述的结论是否还成立.(3)应用:如图③,点,,不在同一条直线上,其它条件依然不变,此时恰好有.设直线交于点,请把图形补全.若,则___________.4、如图,中,,,.(1)用直尺和圆规作的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交于点,求的长.5、如图,△是等边三角形,在直线上,.求证:.-参考答案-一、单选题1、C【解析】【分析】根据轴对称图形的概念“如果一个图形沿着一条直线折叠,直线两旁的部分能够相互重合的图形”可直接进行排除选项.【详解】解:都是轴对称图形,而不是轴对称图形,所以是轴对称图形的有3个;故选C.【考点】本题主要考查轴对称图形的识别,熟练掌握轴对称图形的概念是解题的关键.2、C【解析】【分析】轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,据此解答即可.【详解】如图所示,所标数字1,2,3,4都符合要求,一共有4种方法.故选C.【考点】本题重点考查了利用轴对称设计图案,需熟练掌握轴对称图形的定义,应该多加练习.3、A【解析】【分析】根据轴对称图形的定义进行判断,即一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.【详解】解:A选项中的图形是轴对称图形,对称轴有两条,如图所示;B、C、D选项中的图形均不能沿某条直线折叠,直线两旁的部分能够互相重合,因此,它们都不是轴对称图形;故选:A.【考点】本题考查了轴对称图形的概念,其中正确理解轴对称图形的概念是解题关键.4、A【解析】【详解】解:A.如图连接CD、BD,∵CA=CD,BA=BD,∴点C、点B在线段AD的垂直平分线上,∴直线BC是线段AD的垂直平分线,故A正确,符合题意;B.CA不一定平分∠BDA,故B错误,不符合题意;C.应该是S△ABC=•BC•AH,故C错误,不符合题意;D.根据条件AB不一定等于AD,故D错误,不符合题意.故选A.5、C【解析】【详解】根据勾股定理求出BC,根据线段垂直平分线性质求出AE=BE,根据勾股定理求出AE,再根据勾股定理求出DE即可.解:在RtABC中,由勾股定理得:BC==4,连接AE,从作法可知:DE是AB的垂直评分线,根据性质AE=BE,在Rt△ACE中,由勾股定理得:AC+CE=AE,即3+(4-AE)=AE,解得:AE=,在Rt△ADE中,AD=AB=,由勾股定理得:DE+()=(),解得:DE=.故选C.“点睛”:本题考查了线段垂直平分线性质,勾股定理的应用,能灵活运用勾股定理得出方程是解此题的关键.二、填空题1、②③④【解析】【分析】通过延长EB至E',使BE=BE',连接,构造出全等三角形,再利用全等三角形的性质依次分析,可得出正确的结论是②③④.【详解】解:如图,延长EB至E',使BE=BE',连接;∵∠ABC=90°,∴AB垂直平分EE',∴AE=AE',∴∠1=∠2,∠3=∠5,∵∠1=,∴∠E'AE=2∠1=∠CAD,∴∠E'AC=∠EAD,

又∵AD=AC,∴,∴∠5=∠4,∠ADE=∠ACB(即②正确),∴∠3=∠4;当∠6=∠1时,∠4+∠6=∠3+∠1=90°,此时,∠AME=180°-(∠4+∠6)=90°,当∠6≠∠1时,∠4+∠6≠∠3+∠1,∠4+∠6≠90°,此时,∠AME≠90°,∴①不正确;若CD∥AB,则∠7=∠BAC,∵AD=AC,∴∠7=∠ADC,∵∠CAD+∠7+∠ADC=180°,∴,

∴∠1+∠7=90°,∴∠2+∠7=90°,∴∠2+∠BAC=90°,即∠E'AC=90°,由,∴∠EAD=∠CAE'=90°,E'C=DE,∴AE⊥AD(即③正确),DE=E'B+BE+CE=2BE+CE(即④正确);故答案为:②③④.【考点】本题综合考查了线段的垂直平分线的判定与性质、全等三角形的判定与性质、等腰三角形的性质、平行线的性质等内容;要求学生能够根据已知条件通过作辅助线构造出全等三角形以及能正确运用全等三角形的性质得到角或线段之间的关系,能进行不同的边或角之间的转换,考查了学生的综合分析和数形结合的能力.2、3【解析】【分析】根据轴对称的性质以及全等三角形的性质一一判断即可.【详解】解:和是的轴对称图形,,,,,故①正确;,由翻折的性质得,,又,,故②正确;,,,边上的高与边上的高相等,即点到两边的距离相等,平分,故③正确;只有当时,,才有,故④错误;在和中,,,,,,故⑤错误;综上所述,结论正确的是①②③.故答案为:3.【考点】本题考查轴对称的性质,全等三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3、15°【解析】【分析】根据等腰三角形两底角相等,求出∠ABC的度数,再根据线段垂直平分线上的点到线段两端点的距离相等,可得AD=BD,根据等边对等角的性质,可得∠ABD=∠A,然后求∠DBC的度数即可.【详解】∵AB=AC,∠A=50∘,∴∠ABC=(180∘−∠A)=(180∘−50∘)=65∘,∵MN垂直平分线AB,∴AD=BD,∴∠ABD=∠A=50∘,∴∠DBC=∠ABC−∠ABD=65∘−50∘=15∘.故答案为:15∘.【考点】考查等腰三角形的性质,线段垂直平分线的性质,掌握垂直平分线的性质是解题的关键.4、12【解析】【分析】由的中垂线交于点,可得再利用的周长为22,列方程解方程可得答案.【详解】解:的中垂线交于点,,的周长为22,故答案为:【考点】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线的性质是解题的关键.5、45【解析】【详解】解:∵DE垂直平分AB,∴AE=BE.∵BE⊥AC,∴△ABE是等腰直角三角形.∴∠BAC=∠ABE=45°.又∵AB=AC,∴∠ABC=(180°-∠BAC)=(180°-45°)=67.5°.∴∠CBE=∠ABC-∠ABE=67.5°-45°=22.5°.∵AB=AC,AF⊥BC,∴BF=CF又∵BE⊥AC∴EF=BF.∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°故答案为:45.三、解答题1、(1)60°;(2)详见解析.【解析】【分析】(1)根据等腰三角形两底角相等求出∠B,再根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠BAD=∠B,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解;(2)根据三角形的内角和得到∠DAC=90°,根据直角三角形的性质得到AD=CD,根据等腰三角形的性质即可得到结论.【详解】(1)解:∵AB=AC,∠BAC=120°,∴∠B=∠C=(180°﹣∠BAC)=(180°﹣120°)=30°,∵DE垂直平分AB,∴AD=BD,∴∠BAD=∠B=30°,∴∠ADC=∠B+∠BAD=30°+30°=60°;(2)证明:∵∠ADC=60°,∠C=30°,∴∠DAC=90°,∴AD=CD,∵BD=AD,∴DC=2DB.【考点】本题考查线段垂直平分线的性质、等腰三角形的性质、直角三角形中30°角所对的的直角边等于斜边的一半,平时要熟练掌握各性质定理.2、(1)图见解析;(2)对折.【解析】【分析】(1)根据垂直平分线的作法,分别以A,B为圆心,以大于AB的一半为半径画弧,连接交点即是线段AB的垂直平分线;(2)利用对折,使得点A与点B重合,则折痕所在直线为线段AB的垂直平分线.【详解】解:(1)如图所示;(2)对折,使得点A与点B重合,则折痕所在直线为线段AB的垂直平分线.【考点】此题主要考查了线段垂直平分线的作法,这是初中阶段最基本图形的作法之一,同学们应熟练掌握.3、(1)相等,;(2)成立,证明见解析;(3)见解析,4.【解析】【分析】(1)证明△BCD≌△ACE,并运用三角形外角和定理和等边三角形的性质求解即可;(2)是第(1)问的变式,只是位置变化,结论保持不变;(3)根据∠AEC=30°,判定AE是等边三角形CDE的高,运用前面的结论,把条件集中到一个含有30°角的直角三角形中求解即可.【详解】(1)相等;

.理由如下:∵和都是等边三角形,∴,,,∴,在和中,∴.∴,.又∵,∴.(2)成立;理由如下:证明:∵和都是等边三角形,∴,,,∴,在和中,∴.∴,.又∵,∴.(3)补全图形(如图),∵△CDE是等边三角形,∴∠DEC=60°,∵∠AEC=30°,∴∠AEC=∠AED,∴EQ⊥DQ,∴∠DQP=90°,根据(1)知,∠BDC=∠AEC=30°,∵PQ=2,∴DP=4.故答案为:4.【考点】本题是一道猜想证明题,以两线段之间的大小关系为基础,考查了等边三角形的性质,三角形的全等,直角三角形的性质,证明两个手拉手模型三角形全等是解题的关键.4、(1)详见解析;(2).【解析】【分析】(1)分别以,为圆心,大于为半径画弧,两弧交于点,,作直线即可.(2)设,在中,利用勾股定理构建方程即可解决问题.【详解】(1)如图直线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论