考点解析北师大版9年级数学上册期末试题附参考答案详解【突破训练】_第1页
考点解析北师大版9年级数学上册期末试题附参考答案详解【突破训练】_第2页
考点解析北师大版9年级数学上册期末试题附参考答案详解【突破训练】_第3页
考点解析北师大版9年级数学上册期末试题附参考答案详解【突破训练】_第4页
考点解析北师大版9年级数学上册期末试题附参考答案详解【突破训练】_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北师大版9年级数学上册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题24分)一、单选题(6小题,每小题2分,共计12分)1、在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为(

)A.9人 B.10人 C.11人 D.12人2、已知四边形ABCD是平行四边形,下列结论:①当AB=BC时,它是菱形;②当AC⊥BD时,它是菱形;③当∠ABC=90°时,它是矩形;④当AC=BD时,它是正方形,其中错误的有(

)A.1个 B.2个 C.3个 D.4个3、如图,为△的中位线,点在上,且;若,则的长为(

)A.2 B.1 C.4 D.34、如图,矩形ABCD中,AD=2,AB=,对角线AC上有一点G(异于A,C),连接DG,将△AGD绕点A逆时针旋转60°得到△AEF,则BF的长为(

)A. B.2 C. D.25、在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格点三角形△ADE只算一个),这样的格点三角形一共有()A.4个 B.5个 C.6个 D.7个6、一元二次方程,配方后可形为(

)A. B.C. D.二、多选题(6小题,每小题2分,共计12分)1、如图,在△ABC中,点D,E分别在边AB、AC上,下列条件中能判断△AED∽△ABC的是()A.∠AED=∠ABC B.∠ADE=∠ACBC. D.2、不能说明△ABC∽△A’B’C’的条件是(

)A.或 B.且C.且 D.且3、有下列四个命题,其中不正确的为(

)A.两条对角线互相平分的四边形是平行四边形B.两条对角线相等的四边形是菱形C.两条对角线互相垂直的四边形是正方形D.两条对角线相等且互相垂直的四边形是正方形4、下列关于x的方程的说法正确的是()A.一定有两个实数根 B.可能只有一个实数根C.可能无实数根 D.当时,方程有两个负实数根5、两个关于的一元二次方程和,其中,,是常数,且.如果是方程的一个根,那么下列各数中,一定是方程的根的是()A. B. C.2 D.-26、如图,,AD与BC相交于点O,那么在下列比例式中,不正确的是(

)A. B.C. D.第Ⅱ卷(非选择题76分)三、填空题(8小题,每小题2分,共计16分)1、对任意实数a,b,定义一种运算:,若,则x的值为_________.2、已知菱形的边长为,两条对角线的长度的比为3:4,则两条对角线的长度分别是_____________.3、若m,n是关于x的方程x2-3x-3=0的两根,则代数式m2+n2-2mn=_____.4、布袋中有红、黄、蓝三个球,它们除颜色不同以外,其他都相同,从袋中随机取出一个球后再放回袋中,这样取出球的顺序依次是“红—黄—蓝”的概率是__________.5、已知、在同一个反比例函数图像上,则________.6、要利用一面很长的围墙和100米长的隔离栏建三个如图所示的矩形羊圈,若计划建成的三个羊圈总面积为400平方米,则羊圈的边长AB为多少米?设AB=x米,根据题意可列出方程的为_________.7、如图,在矩形纸片ABCD中,AB=12,AD=5,P为DC边上的动点(点P不与点D,C重合),将纸片沿AP折叠(1)当四边形ADPD′是正方形时,CD′的长为___.(2)当CD′的长最小时,PC的长为___.8、已知方程的一根为,则方程的另一根为_______.四、解答题(6小题,每小题10分,共计60分)1、(1)证明推断:如图(1),在正方形中,点,分别在边,上,于点,点,分别在边,上,.求证:;(2)类比探究:如图(2),在矩形中,将矩形沿折叠,使点落在边上的点处,得到四边形,交于点,连接交于点.试探究与之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接,若,,求的长.2、如图,在四边形中,,,..(1)求的长;(2)求四边形的面积.3、如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC三个顶点分别为A(﹣1,2)、B(2,1)、C(4,5).(1)以原点O为位似中心,在x轴的上方画出△A1B1C1,使△A1B1C1与△ABC位似,且相似比为2;(2)△A1B1C1的面积是平方单位.(3)点P(a,b)为△ABC内一点,则在△A1B1C1内的对应点P’的坐标为.4、已知关于的方程有实根.(1)求的取值范围;(2)设方程的两个根分别是,,且,试求的值.5、如图,四边形ABCD是正方形,点E在BC延长线上,DF⊥AE于点F,点G在AE上,且∠ABG=∠E.求证:AG=DF.6、(1)阅读理解如图,点,在反比例函数的图象上,连接,取线段的中点.分别过点,,作轴的垂线,垂足为,,,交反比例函数的图象于点.点,,的横坐标分别为,,.小红通过观察反比例函数的图象,并运用几何知识得出结论:AE+BG=2CF,CF>DF,由此得出一个关于,,之间数量关系的命题:若,则______.(2)证明命题小东认为:可以通过“若,则”的思路证明上述命题.小晴认为:可以通过“若,,且,则”的思路证明上述命题.请你选择一种方法证明(1)中的命题.-参考答案-一、单选题1、C【解析】【分析】设参加酒会的人数为x人,每人碰杯次数为次,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x人,依题可得:x(x-1)=55,化简得:x2-x-110=0,解得:x1=11,x2=-10(舍去),故答案为C.【考点】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.2、A【解析】【分析】根据矩形、菱形、正方形的判定可以判断题目中的各个小题的结论是否正确,从而可以解答本题.【详解】解:四边形是平行四边形,A、当时,它是菱形,选项不符合题意,B、当时,它是菱形,选项不符合题意,C、当时,它是矩形,选项不符合题意,D、当时,它是矩形,不一定是正方形,选项符合题意,故选:.【考点】本题考查正方形、菱形、矩形的判定,解答本题的关键是熟练掌握矩形、菱形、正方形的判定定理.3、A【解析】【分析】根据三角形中位线定理求出DE,根据直角三角形的性质求出DF,计算即可.【详解】∵DE为△ABC的中位线,∴DE=BC=5,∵∠AFB=90°,D是AB的中点,∴DF=AB=3,∴EF=DE-DF=2,故选A.【考点】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.4、A【解析】【分析】过点F作FH⊥BA交BA的延长线于点H,则∠FHA=90°,△AGD绕点A逆时针旋转60°得到△AEF,得∠FAD=60°,AF=AD=2,又由四边形ABCD是矩形,∠BAD=90°,得到∠FAH=30°,在Rt△AFH中,FH=AF=1,由勾股定理得AH=,得到BH=AH+AB=2,再由勾股定理得BF=.【详解】解:如图,过点F作FH⊥BA交BA的延长线于点H,则∠FHA=90°,∵△AGD绕点A逆时针旋转60°得到△AEF∴∠FAD=60°,AF=AD=2,∵四边形ABCD是矩形∴∠BAD=90°∴∠BAF=∠FAD+∠BAD=150°∴∠FAH=180°-∠BAF=30°在Rt△AFH中,FH=AF=1由勾股定理得AH=在Rt△BFH中,FH=1,BH=AH+AB=2由勾股定理得BF=故BF的长.故选:A【考点】本题考查了图形的旋转,矩形的性质,含30度角的直角三角形的性质,勾股定理等知识,解决此题的关键在于作出正确的辅助线.5、C【解析】【分析】根据题意,得出ABC的三边之比,并在直角坐标系中找出与ABC各边长成比例的相似三角形,并在直角坐标系中无一遗漏地表示出来.【详解】解:ABC的三边之比为,如图所示,可能出现的相似三角形共有以下六种情况:所以使得△ADE∽△ABC的格点三角形一共有6个,故选:C.【考点】本题考察了在直角坐标系中画出与已知三角形相似的图形,解题的关键在于找出与已知三角形各边长成比例的三角形,并在直角坐标系中无一遗漏地表示出来.6、A【解析】【分析】把常数项移到方程右边,再把方程两边加上16,然后把方程作边写成完全平方形式即可【详解】解:x2-8x=2,x2-8x+16=18,(x-4)2=18.故选:A.【考点】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.二、多选题1、ABD【解析】【分析】根据三角形相似的判断方法判断即可.【详解】解:A、∵∠AED=∠ABC,∠A=∠A,∴△AED∽△ABC,符合题意;B、∵∠ADE=∠AC,∠A=∠A,∴△AED∽△ABC,符合题意;C、,不能判定△AED∽△ABC,不符合题意;D、∵,∠A=∠A,∴△AED∽△ABC,符合题意.故选:ABD.【考点】此题考查了三角形相似的判断方法,解题的关键是熟练掌握三角形相似的判定方法.2、ABD【解析】【分析】根据相似三角形的判定方法求解即可.【详解】解:A、或,不能判定,符合题意;B、且,不能判定,符合题意;C、且,能判定,不符合题意;D、且,不能判定,符合题意.故选:ABD.【考点】此题考查了相似三角形的判定方法,解题的关键是熟练掌握相似三角形的判定方法.相似三角形的判定方法:两边对应成比例且夹角相等的两个三角形相似;三边对应成比例的两个三角形相似;两角对应相等的两个三角形相似.3、BCD【解析】【分析】利用平行四边形的判定、菱形的判定及正方形的判定逐一判断后即可确定正确的选项.【详解】解:A、两条对角线互相平分的四边形是平行四边形,故此选项不符合题意;B、两条对角线互相垂直平分的四边形是菱形,故此选项符合题意;C、两条对角线互相垂直平分且相等的四边形是正方形,故此选项符合题意;D、两条对角线相等且互相垂直平分的四边形是正方形,故此选项符合题意.故选BCD.【考点】本题考查了命题与定理的知识,了解平行四边形的判定、菱形的判定及正方形的判定是解答本题的关键,难度较小.4、BD【解析】【分析】直接利用方程根与系数的关系以及根的判别式分析求出即可.【详解】解:当a=0时,方程整理为解得,∴选项B正确;故选项A错误;当时,方程是一元二次方程,∴∴此时的方程表两个不相等的实数根,故选项C错误;若时,,∴当时,方程有两个负实数根∴选项D正确,故选:BD【考点】此题主要考查了一元二次方程根的判别式和根与系数的关系,正确把握相关知识是解题关键.5、AD【解析】【分析】利用方程根的定义去验证判断即可.【详解】∵,,∴,∴,,∴,,∵是方程的一个根,∴是方程的一个根,∴是方程的一个根,即时方程的一个根.∵是方程的一个根,∴,当x=时,,∴是方程的根.故选:A,D.【考点】本题考查了一元二次方程根的定义即使得方程两边相等的未知数的值,正确理解定义是解题的关键.6、ABD【解析】【分析】先判断三角形相似,再根据相似三角形的对应边成比例,则可判断A、B、C的正确性,根据基本事实,一组平行线被两条直线所截的对应线段成比例,判断D的正确性.【详解】解:∵,∴∠A=∠D,∠B=∠C,∴,∴故A不正确;故B不正确;故C正确;∵,∴即故D不正确;故选:ABD.【考点】本题考查了相似三角形的判定和相似三角形的性质以及基本事实的应用,根据性质找到对应的边成比例是解答此题的关键.三、填空题1、2或-3##-3或2【解析】【分析】根据题意得到关于x的一元二次方程,解方程即可.【详解】解:∵,∴,∴,解得或,故答案为:2或-3.【考点】本题主要考查了新定义下的实数运算,解一元二次方程,正确理解题意是解题的关键.2、,【解析】【分析】如图BD:AC=3:4,AB=10cm,设BD=3x,则AC=4x,根据菱形的性质,DO=BO=,AO=CO=2x,在RtΔAOD中,AD2+DO2+AO2,,求出x,BD=3x,AC=4x即可.【详解】如图BD:AC=3:4,AB=10cm,设BD=3x,则AC=4x,根据菱形的性质,DO=BO=,AO=CO=2x,AC垂直BD在RtΔAOD中,AD2+DO2+AO2,,x=4,AC=4×4=16,BD=3×4=12,则两条对角线的长度分别是12cm,16cm.故答案为:12cm,16cm.【考点】本题考查菱形的对角线问题,掌握菱形的性质,利用对角线之间的关系,和勾股定理构造方程是解题关键.3、21【解析】【分析】先根据根与系数的关系得到m+n=3,mn=﹣3,再根据完全平方公式变形得到m2+n2﹣2mn=(m+n)2﹣4mn,然后利用整体代入的方法计算.【详解】解:∵m,n是关于x的方程x2-3x-3=0的两根,∴m+n=3,mn=﹣3,∴m2+n2﹣2mn=(m+n)2﹣4mn=32﹣4×(﹣3)=21.故答案为:21.【考点】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2,x1x2.4、【解析】【分析】列举出所有情况,看球的顺序依次是“红黄蓝”的情况数占所有情况数的多少即可.【详解】解:画出树形图:共有27种情况,球的顺序依次是“红黄蓝”的情况数有1种,所以概率为.故答案为:.【考点】考查用列树状图的方法解决概率问题;得到球的顺序依次是“红黄蓝”的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.5、【解析】【分析】首先设反比例函数解析式为,然后将两点坐标分别代入,即可得出和的表达式,进而得解.【详解】解:设反比例函数解析式为,将、分别代入,得,∴故答案为.【考点】此题主要考查反比例函数的性质,熟练掌握,即可解题.6、x(100-4x)=400【解析】【分析】由题意,得BC的长为(100-4x)米,根据矩形面积列方程即可.【详解】解:设AB为x米,则BC的长为(100-4x)米由题意,得x(100-4x)=400故答案为:x(100-4x)=400.【考点】本题主要考查了一元二次方程的实际问题,解决问题的关键是通过图形找到对应关系量,根据等量关系式列方程.7、

【解析】【分析】(1)根据四边形是正方形,得到从而得到再利用勾股定理求解即可得到答案;(2)如图:连接,运用矩形的性质和折叠的性质求出的最小值,再设,则,最后在中运用勾股定理解答即可【详解】解:(1)如图所示,∵四边形是正方形∴∵∴∵四边形ABCD是矩形∴,∠B=90°∴(2)如图:连接,当点在上时,有最小值.∵四边形是矩形,,,∴,,∴.由折叠性质,得,,∴的最小值.设,则.在中,,即,解得,∴的长为.故答案为:.【考点】本题主要考查矩形的性质和折叠的性质,正方形的性质,勾股定理,根据矩形的性质和折叠的性质确定的最小值成为解答本题的关键.8、【解析】【分析】设方程的另一个根为c,再根据根与系数的关系即可得出结论.【详解】解:设方程的另一个根为c,∵,∴.故答案为.【考点】本题考查的是根与系数的关系,熟记一元二次方程根与系数的关系是解答此题的关键.四、解答题1、(1)见解析;(2);见解析;(3)【解析】【分析】(1)先△ABE≌△DAQ,可得AE=DQ;再证明四边形DQFG是平行四边形即可解决问题;(2)如图2中,作GM⊥AB于M.然后证明△ABE∽△GMF即可解决问题;(3)如图3中,作PM⊥BC交BC的延长线于M.利用相似三角形的性质求出PM,CM即可解决问题.【详解】(1)如图(1),∵四边形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAQ.∴∠QAO+∠OAD=90°.∵AE⊥DQ,∴∠ADO+∠OAD=90°.∴∠QAO=∠ADO.∴△ABE≌△DAQ(ASA),∴AE=DQ.∵四边形ABCD是正方形,AE⊥DQ,AE⊥GF,∴DG∥QF,DQ∥GF,∴四边形DQFG是平行四边形,∴DQ=GF,∴FG=AE;(2).理由:如图(2)中,作GM⊥AB于M.∵AE⊥GF,∴∠AOF=∠GMF=∠ABE=90°,∴∠BAE+∠AFO=90°,∠AFO+∠FGM=90°,∴∠BAE=∠FGM,∴△ABE∽△GMF,∴GF:AE=GM:AB,∵∠AMG=∠D=∠DAM=90°,∴四边形AMGD是矩形,∴GM=AD,∴GF:AE=AD:AB,∵四边形ABCD是矩形,∴BC=AD,∴GF:AE=BC:AB,∵,∴.(3)解:如图(3)中,作PM⊥BC交BC的延长线于M.由BE:BF=3:4,设BE=3k,BF=4k,则EF=AF=5k,∵,,∴AE=,在直角三角形ABE中,根据勾股定理,得,∴∴k=1或﹣1(舍去),∴BE=3,AB=9,∵BC:AB=2:3,∴BC=6,∴BE=CE=3,AD=PE=BC=6,∵∠EBF=∠FEP=∠PME=90°,∴∠FEB+∠PEM=90°,∠PEM+∠EPM=90°,∴∠FEB=∠EPM,∴△FBE∽△EMP,∴,∴,∴EM=,PM=,∴CM=EM﹣EC=﹣3=,∴PC==.【考点】本题考查了正方形、矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形,正确寻找全等三角形或相似三角形解决问题,学会利用参数构建方程解决问题,是解题的关键.2、(1);(2)【解析】【分析】(1)作DM⊥BC,AN⊥DM垂足分别为M、N,易知四边形MNAB是矩形,分别在Rt△ADN中求出DN,利用含60°的直角三角形求CD即可;(2)由(1)可知,四边形的面积就是△DCM与梯形ADMB的面积和.【详解】解:(1)如图作DM⊥BC,AN⊥DM垂足分别为M、N.∵∠B=∠NMB=∠MNA=90°,∴四边形MNAB是矩形,∴MN=AB=5,AN=BM,∠BAN=90°,∵∠C+∠B+∠ADC+∠BAD=360°,∠C=60°,∠B=∠ADC=90°,∴∠DAN=∠BAD﹣∠BAN=30°,在RT△AND中,∵AD=2,∠DAN=30°,∴DN=AD=1,AN=,在RT△DMC中,∵DM=DN+MN=6,∠C=60°,∴∠CDM=30°,∴CD=2MC,设MC=x,则CD=2x,∵CD2=DM2+CM2,∴4x2=x2+62,∵x>0∴x=,∴CD=.(2)由(1)得,,,.【考点】本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论