基础强化人教版8年级数学上册《轴对称》专题练习试题(含答案及解析)_第1页
基础强化人教版8年级数学上册《轴对称》专题练习试题(含答案及解析)_第2页
基础强化人教版8年级数学上册《轴对称》专题练习试题(含答案及解析)_第3页
基础强化人教版8年级数学上册《轴对称》专题练习试题(含答案及解析)_第4页
基础强化人教版8年级数学上册《轴对称》专题练习试题(含答案及解析)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学上册《轴对称》专题练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于

AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若AC=3,AB=5,则DE等于(

A.2 B. C. D.2、下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A. B. C. D.3、在平面直角坐标系中.点P(1,﹣2)关于x轴的对称点的坐标是()A.(1,2) B.(﹣1,﹣2) C.(﹣1,2) D.(﹣2,1)4、如图,若是等边三角形,,是的平分线,延长到,使,则(

)A.7 B.8 C.9 D.105、如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的△ADH中(

)A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC,若DE=1,则BC的长是_____.2、已知△ABC是等腰三角形.若∠A=40°,则△ABC的顶角度数是____.3、如图,在中,,以为边,作,满足,为上一点,连接,,连接.下列结论中正确的是________(填序号)①;②;③若,则;④.4、如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是__.5、(1)等腰三角形底边长为6cm,一腰上的中线把它的周长分成两部分的差为2cm,则腰长为________.(2)已知的周长为24,,于点D,若的周长为20,则AD的长为________.(3)已知等腰三角形的周长为24,腰长为x,则x的取值范围是________.三、解答题(5小题,每小题10分,共计50分)1、如图,牧马人从A地出发,先到草地边某一处牧马,再到河边饮马,然后回到B处,请画出最短路径.2、已知点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,点C(a+2,b)与点D关于原点对称.(1)求点A、B、C、D的坐标;(2)顺次联结点A、D、B、C,求所得图形的面积.3、如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D.(1)求∠ADC的度数;(2)求证:DC=2DB.4、如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数.(2)求证:FB=FE.5、如图,在△ABC中,AB=AC,D,E是BC边上的点,连接AD,AE,以△ADE的边AE所在直线为对称轴作△ADE的轴对称图形△AD'E,连接D'C,若BD=CD'.(1)求证:△ABD≌△ACD'.(2)若∠BAC=100°,求∠DAE的度数.-参考答案-一、单选题1、C【解析】【详解】根据勾股定理求出BC,根据线段垂直平分线性质求出AE=BE,根据勾股定理求出AE,再根据勾股定理求出DE即可.解:在RtABC中,由勾股定理得:BC==4,连接AE,从作法可知:DE是AB的垂直评分线,根据性质AE=BE,在Rt△ACE中,由勾股定理得:AC+CE=AE,即3+(4-AE)=AE,解得:AE=,在Rt△ADE中,AD=AB=,由勾股定理得:DE+()=(),解得:DE=.故选C.“点睛”:本题考查了线段垂直平分线性质,勾股定理的应用,能灵活运用勾股定理得出方程是解此题的关键.2、B【解析】【分析】结合轴对称图形的概念进行求解即可.【详解】解:根据轴对称图形的概念可知:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选:B.【考点】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3、A【解析】【详解】点P(1,-2)关于x轴的对称点的坐标是(1,2),故选A.4、C【解析】【分析】根据等边三角形三线合一得到BD垂直平分CA,所以CD=,另有,从而求出BE的长度.【详解】解:由于△ABC是等边三角形,则其三边相等,BD也是AC的垂直平分线,即AB=BC=CA=6,AD=DC=3,已知CE=CD,则CE=3.而BE=BC+CE,因此BE=6+3=9.故答案选C.【考点】本题考查了等边三角形性质,看到等边三角形应想到三条边相等,三线合一.5、B【解析】【分析】翻折后的图形与翻折前的图形是全等图形,利用折叠的性质,正方形的性质,以及图形的对称性特点解题.【详解】解:由图形的对称性可知:AB=AH,CD=DH,∵正方形ABCD,∴AB=CD=AD,∴AH=DH=AD.故选B.【考点】本题主要考查翻折图形的性质,解决本题的关键是利用图形的对称性把所求的线段进行转移.二、填空题1、3【解析】【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠DAB=∠B,然后根据角平分线的定义与直角三角形两锐角互余求出∠B=30°,再根据直角三角形30°角所对的直角边等于斜边的一半求出BD,然后求解即可.【详解】解:∵AD平分∠BAC,且DE⊥AB,∠C=90°,∴CD=DE=1,∵DE是AB的垂直平分线,∴AD=BD,∴∠B=∠DAB,∵∠DAB=∠CAD,∴∠CAD=∠DAB=∠B,∵∠C=90°,∴∠CAD+∠DAB+∠B=90°,∴∠B=30°,∴BD=2DE=2,∴BC=BD+CD=1+2=3,故答案为3.【考点】本题考查了角平分线的定义和性质,线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,属于基础题,熟记性质是解题的关键.2、40°或100°【解析】【分析】分∠A为三角形顶角或底角两种情况讨论,即可求解.【详解】解:当∠A为三角形顶角时,则△ABC的顶角度数是40°;当∠A为三角形底角时,则△ABC的顶角度数是180°-40°-40°=100°;故答案为:40°或100°.【考点】本题考查了等腰三角形的性质,此类题目,难点在于要分情况讨论.3、②③④【解析】【分析】通过延长EB至E',使BE=BE',连接,构造出全等三角形,再利用全等三角形的性质依次分析,可得出正确的结论是②③④.【详解】解:如图,延长EB至E',使BE=BE',连接;∵∠ABC=90°,∴AB垂直平分EE',∴AE=AE',∴∠1=∠2,∠3=∠5,∵∠1=,∴∠E'AE=2∠1=∠CAD,∴∠E'AC=∠EAD,

又∵AD=AC,∴,∴∠5=∠4,∠ADE=∠ACB(即②正确),∴∠3=∠4;当∠6=∠1时,∠4+∠6=∠3+∠1=90°,此时,∠AME=180°-(∠4+∠6)=90°,当∠6≠∠1时,∠4+∠6≠∠3+∠1,∠4+∠6≠90°,此时,∠AME≠90°,∴①不正确;若CD∥AB,则∠7=∠BAC,∵AD=AC,∴∠7=∠ADC,∵∠CAD+∠7+∠ADC=180°,∴,

∴∠1+∠7=90°,∴∠2+∠7=90°,∴∠2+∠BAC=90°,即∠E'AC=90°,由,∴∠EAD=∠CAE'=90°,E'C=DE,∴AE⊥AD(即③正确),DE=E'B+BE+CE=2BE+CE(即④正确);故答案为:②③④.【考点】本题综合考查了线段的垂直平分线的判定与性质、全等三角形的判定与性质、等腰三角形的性质、平行线的性质等内容;要求学生能够根据已知条件通过作辅助线构造出全等三角形以及能正确运用全等三角形的性质得到角或线段之间的关系,能进行不同的边或角之间的转换,考查了学生的综合分析和数形结合的能力.4、55°【解析】【详解】,,.5、

4cm或8cm

8

【解析】【分析】(1)根据题意画出图形,由题意得,即可得,又由等腰三角形的底边长为6cm,即可求得答案.(2)由△ABC的周长为24得到AB,BC的关系,由△ABD的周长为20得到AB,BD,AD的关系,再由等腰三角形的性质知,BC为BD的2倍,故可解出AD的值.(3)设底边长为y,再由三角形的三边关系即可得出答案.【详解】(1)如图,,BD是中线由题意得存在两种情况:①②①,∵∴②,∵∴∴腰长为:4cm或8cm故答案为:4cm或8cm.(2)∵△ABC的周长为24,∴∵∴∴∴∵的周长为20∴∴故答案为:8.(3)设底边长为y∵等腰三角形的周长为24,腰长为x∴∴,即解得故答案为:.【考点】本题考查了三角形的综合问题,掌握等腰三角形的性质、等腰三角形三线合一的性质、三角形的周长定义、三角形的三边关系是解题的关键.三、解答题1、见解析【解析】【分析】作出点A的关于草地的对称点,点B的关于河岸的对称点,连接两个对称点,交于草地于点Q,交河边于点P,连接AQ,BP,则AQ+PQ+BP是最短路线.【详解】如图所示AQ+PQ+BP为所求.【考点】本题主要考查对称线段的性质,轴对称的性质,轴对称−最短路线问题等知识点的理解和掌握,能正确画图和根据画图条件进行推理是解此题的关键.2、(1)点A(−1,2),B(−1,−2),C(3,−1),D(−3,1);(2)图见详解,12.【解析】【分析】(1)根据关于x轴对称的点的坐标规律:横坐标相同,纵坐标互为相反数,分别求出a,b的值,进而求出点A、B、C的坐标,再根据关于原点的对称点,横纵坐标都变成相反数求出点D的坐标;(2)把这些点按A−D−B−C−A顺次连接起来,再根据三角形的面积公式计算其面积即可.【详解】解:(1)∵点A(−1,3a−1)与点B(2b+1,−2)关于x轴对称,∴2b+1=−1,3a−1=2,解得a=1,b=−1,∴点A(−1,2),B(−1,−2),C(3,−1),∵点C(a+2,b)与点D关于原点对称,∴点D(−3,1);(2)如图所示:四边形ADBC的面积为:×4×2+×4×4=12.【考点】本题考查的是作图−轴对称变换,熟知关于x、y轴对称的点的坐标特点是解答此题的关键.3、(1)60°;(2)详见解析.【解析】【分析】(1)根据等腰三角形两底角相等求出∠B,再根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠BAD=∠B,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解;(2)根据三角形的内角和得到∠DAC=90°,根据直角三角形的性质得到AD=CD,根据等腰三角形的性质即可得到结论.【详解】(1)解:∵AB=AC,∠BAC=120°,∴∠B=∠C=(180°﹣∠BAC)=(180°﹣120°)=30°,∵DE垂直平分AB,∴AD=BD,∴∠BAD=∠B=30°,∴∠ADC=∠B+∠BAD=30°+30°=60°;(2)证明:∵∠ADC=60°,∠C=30°,∴∠DAC=90°,∴AD=CD,∵BD=AD,∴DC=2DB.【考点】本题考查线段垂直平分线的性质、等腰三角形的性质、直角三角形中30°角所对的的直角边等于斜边的一半,平时要熟练掌握各性质定理.4、(1)54°,(2)见解析【解析】【分析】(1)利用等腰三角形的三线合一的性质证明∠ADB=90°,再利用等腰三角形的性质求出∠ABC即可解决问题.(2)利用角平分线性质和平行线性质证明∠FBE=∠FEB即可.【详解】解:(1)∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵D为BC的中点,∴AD⊥BC,∴∠BAD=90°﹣∠ABC=90°﹣36°=54°.(2)∵BE平分∠ABC,∴∠ABE=∠EBC,又∵EF∥BC,∴∠EBC=∠BEF,∴∠EBF=∠FEB,∴BF=EF.【考点】本题考查等腰三角形的性质,平行线的性质等知识,解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论