考点解析江苏省东台市中考数学真题分类(数据分析)汇编综合训练试题(含答案解析)_第1页
考点解析江苏省东台市中考数学真题分类(数据分析)汇编综合训练试题(含答案解析)_第2页
考点解析江苏省东台市中考数学真题分类(数据分析)汇编综合训练试题(含答案解析)_第3页
考点解析江苏省东台市中考数学真题分类(数据分析)汇编综合训练试题(含答案解析)_第4页
考点解析江苏省东台市中考数学真题分类(数据分析)汇编综合训练试题(含答案解析)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省东台市中考数学真题分类(数据分析)汇编综合训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、在对一组样本数据进行分析时,小华列出了方差的计算公式,由公式提供的信息,则下列说法错误的是(

)A.样本的容量是4 B.样本的中位数是3 C.样本的众数是3 D.样本的平均数是3.52、若一组数据3、4、5、x、6、7的平均数是5,则x的值是(

)A.4 B.5 C.6 D.73、某校举行学生会成员的竞选活动,对竞选者从民主测评和演讲两个方面进行考核,两项成绩均按百分制计,规定民主测评的成绩占40%,演讲的成绩占60%,小新同学的民主测评和演讲的成绩分别为80分和90分,则他的最终成绩是()A.83分 B.84分 C.85分 D.86分4、生活垃圾分类回收是实现垃圾减量化和资源化的重要途径和手段.为了解2019年某市第二季度日均可回收物回收量情况,随机抽取该市2019年第二季度的天数据,整理后绘制成统计表进行分析.日均可回收物回收量(千吨)合计频数123频率0.050.100.151表中组的频率满足.下面有四个推断:①表中的值为20;②表中的值可以为7;③这天的日均可回收物回收量的中位数在组;④这天的日均可回收物回收量的平均数不低于3.所有合理推断的序号是(

)A.①② B.①③ C.②③④ D.①③④5、有15名学生参加学校举办的“最强大脑”智力竞赛,比赛结束后根据每个学生的成绩计算平均数、中位数、众数、方差,若去掉一个最高分,一个最低分,则一定不会发生变化的是()A.平均数 B.中位数 C.众数 D.方差6、费尔兹奖是国际上享有崇高声誉的一个数学奖项,每四年评选一次,主要授予年轻的数学家.下面数据是部分获奖者获奖时的年龄(单位:岁):29,32,33,35,35,40,则这组数据的众数和中位数分别是(

)A.35,35 B.34,33 C.34,35 D.35,347、河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是08、一组数据:3,2,1,5,2的中位数和众数分别是(

)A.1和2 B.1和5 C.2和2 D.2和1第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、数学兴趣小组的成员小明记录了“五一”小长假期间当地每日的最高气温(单位:℃),并绘制成图示折线统计图,则这五日最高气温的平均数为____℃.2、一组数据3,5,3,的众数只有一个,则的值不能为______.3、某体育用品专卖店在一段时间内销售了20双学生运动鞋,各种尺码运动鞋的销售量如下表.则这20双运动鞋的尺码组成的一组数据的众数是_________.尺码/销售量/双1310424、甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均数都是8环,方差分别为S甲2=1.4,S乙2=0.6,则两人射击成绩比较稳定的是_____(填“甲”或“乙”).5、已知一组数据10、3、a、5的平均数为5,那么a为_____.6、一个样本有个数据:,,,,,,,,,,如果组距为,则应分成______组.7、如果样本方差,那么这个样本的平均数是_______,样本容量是________.三、解答题(7小题,每小题10分,共计70分)1、某校为了了解本校学生“上周内做家务劳动所用的时间”(简称“劳动时间”)情况,在本校随机调查了100名学生的“劳动时间”,并进行统计,绘制了如下统计表:组别“劳动时间”t/分钟频数组内学生的平均“劳动时间”/分钟A850B1675C40105D36150根据上述信息,解答下列问题:(1)这100名学生的“劳动时间”的中位数落在__________组;(2)求这100名学生的平均“劳动时间”;(3)若该校有1200名学生,请估计在该校学生中,“劳动时间”不少于90分钟的人数.2、小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是品牌,月平均销售量最稳定的是品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.3、为庆祝中国共产党建党100周年,某校开展了以“学习百年党史,汇聚团结伟力”为主题的知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分成五个等级,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:等级成绩(1)本次调查一共随机抽取了_________名学生的成绩,频数分布直方图中__________;(2)补全学生成绩频数分布直方图;(3)所抽取学生成绩的中位数落在________等级;(4)若成绩在80分及以上为优秀,全校共有2000名学生,估计成绩优秀的学生有多少人?4、在读书节活动中,某校为了解学生参加活动的情况,随机调查了部分学生每人参加活动的项数.根据统计的结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的学生人数为___________,图①中m的值为___________;(2)求统计的这组项数数据的平均数、众数和中位数.5、为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)(1)求这7天内小申家每天用水量的平均数和中位数;(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;(3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.6、某车间有工人15人,某月他们生产的零件个数统计如下表:生产零件的个数(个)60048022018012090工人人数(人)113334(1)求这15名工人该月生产零件的平均个数;(2)为了调动工人的积极性,决定实行目标管理,对完成目标的工人进行适当的奖励.如果想让一半左右的工人都能获得奖励,请你从平均数、中位数、众数的角度进行分析,该如何确定月生产目标?7、某防护服生产公司旗下有A、B两个生产车间,为了解A、B两个生产车间工人的日均生产数量,公司领导小组从A、B两个生产车间分别随机抽取了20名工人的日均生产数量x(单位:套),并对数据进行分析整理(数据分为五组:A.25≤x<35,B.35≤x<45,C.45≤x<55,D.55≤x<65,E.65≤x<75).得出了以下部分信息:A.B两个生产车间工人日均生产数量的平均数、中位数、众数、极差如表:车间平均数(个)中位数(个)众数(个)极差A54566242Bab6445“B生产车间”工人日均生产数量在C组中的数据是:52,45,54,48,54,其余所有数据的和为807.根据以上信息,回答下列问题:(1)上述统计图表中,a=,b=.扇形统计图B组所对应扇形的圆心角度数为°.(2)根据以上数据,你认为哪个生产车间情况更好?请说明理由(一条理由即可);(3)若A生产车间共有200名工人,B生产车间共有180个工人,请估计该公司生产防护服数量在“45≤x<65”范围的工人数量.-参考答案-一、单选题1、D【解析】【分析】先根据方差的计算公式得出样本数据,从而可得样本的容量,再根据中位数与众数的定义、平均数的计算公式逐项判断即可得.【详解】由方差的计算公式得:这组样本数据为则样本的容量是4,选项A正确样本的中位数是,选项B正确样本的众数是3,选项C正确样本的平均数是,选项D错误故选:D.【考点】本题考查了中位数与众数的定义、平均数与方差的计算公式等知识点,依据方差的计算公式正确得出样本数据是解题关键.2、B【解析】【分析】根据平均数的定义计算即可;【详解】由题意得:(3+4+5+x+6+7)=5,解得:x=5,故选:B.【考点】本题考查平均数的定义,解题的关键是根据平均数的定义构建方程解决问题3、D【解析】【分析】根据加权平均数的定义列式计算即可.【详解】解:他的最终成绩为(分,故选:.【考点】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.4、D【解析】【分析】①根据数据总和=频数÷频率,列式计算即可得出m的值;②根据的频率a满足,可求出该范围的频数,进一步得出b的值的范围,从而求解;③根据中位数的定义即可求解;④根据加权平均数的计算公式即可求解.【详解】解:①日均可回收物回收量(千吨)为时,频数为1,频率为0.05,所以总数m=,推断合理;②20×0.2=4,20×0.3=6,1+2+6+3=12,故表中b的值可以为7,是不合理的推断;③1+2+6=9,故这m天的日均可回收物回收量的中位数在组,是合理推断;④(1+5)÷2=3,0.05+0.10=0.15,这天的日均可回收物回收量的平均数不低于3,是合理推断.故选:D【考点】本题考查频数(率)分布表,从表中获取数量及数量之间的关系是解题问题的关键.5、B【解析】【分析】根据中位数的定义求解即可.【详解】去掉一个最高分和一个最低分对中位数没有影响.故选:B.【考点】本题考查了统计量的选择,解题的关键是了解中位数的定义.6、D【解析】【分析】这组数据中出现次数最多的数是众数,把这组数据按从小到大的顺序排列最中间的两个数据的平均数是中位数.【详解】29,32,33,35,35,40,这组数据的众数:35,这组数据的中位数:.故选:D.【考点】本题考查了众数和中位数,解决问题的关键是熟练掌握众数和中位数的定义和确定方法.7、B【解析】【详解】分析:直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.详解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选B.点睛:此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.8、C【解析】【分析】根据众数是出现次数最多的数据可求得众数,将所给数据从小到大排列,中位数是最中间位置的数据即可求得中位数.【详解】解:该组数据中2出现次数最多,所以众数为2,将所给数据从小到大排列为1,2,2,3,5,最中间位置的数为2,所以中位数为2,故选:C.【考点】本题考查中位数、众数,熟练掌握中位数和众数的求法是解答的关键.二、填空题1、【解析】【分析】由折线图可得这五天的最高气温,再求解五天的最高气温的平均数即可得到答案.【详解】解:这五日的最高气温分别为:所以五日的最高气温的平均数为:故答案为:【考点】本题考查的是折线统计图,平均数的含义,掌握从折线统计图中获取信息,求解一组数据的平均数是解题的关键.2、5【解析】【分析】根据众数的概念求解.【详解】解:当x=5时,众数为3和5,因为该组数据的众数只有一个,所以x的值不能为5.故答案为:5.【考点】本题考查了众数,一组数据中出现次数最多的数据叫做众数.3、【解析】【分析】直接根据众数的定义:一组数据中出现次数最多的数即为众数即可得出结论.【详解】由表格可知:尺码的运动鞋销售量最多为双,即众数为.故答案为:25.【考点】本题考查了众数,解题的关键是熟练掌握众数的定义.4、乙【解析】【分析】根据方差的意义求解即可.【详解】解:∵S甲2=1.4,S乙2=0.2,∴S乙2<S甲2,∴两人成绩比较稳定的是乙,故答案为:乙.【考点】本题主要考查方差,解题的关键是掌握方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5、2【解析】【分析】根据平均数的计算方法,列出等式然后计算即可.【详解】解:依题意有,解得.故答案为:2.【考点】本题考查了算术平均数,正确理解算术平均数的意义是解题的关键.6、5【解析】【分析】极差除以组距,取不小于该值的最小的整数.【详解】这组数据的最大值为53,最小值为47,则极差为:53-47=6,所以,取5组,故答案为:5.【考点】本题考查了频数(率)分布表,涉及给数据分组,计算出极差是解题的关键.极差:一组数据中最大值与最小值的差叫做这组数据的极差.7、

18

20【解析】【分析】先根据方差公式中所有字母所代表的意义,n是样本容量,是样本中的平均数,再结合给出的式子即可得出答案.【详解】解:在公式中,平均数是,样本容量是n,在中,这个样本的平均数为18,样本容量为20.故答案为:18;20.【考点】本题考查方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.三、解答题1、(1)C(2)112分钟(3)912人【解析】【分析】(1)根据中位数的定义可知中位数落在C组;(2)根据加权平均数的公式计算即可;(3)用样本估计总体即可.(1)解:由题意可知,100名学生的“劳动时间”的中位数是第50、51个数,故本次调查数据的中位数落在C组,故答案为:C;(2)解:(分钟),∴这100名学生的平均“劳动时间”为112分钟;(3)解:∵(人),∴估计在该校学生中,“劳动时间”不少于90分钟的有912人.【考点】本题考查了统计的知识,解题的关键是仔细读图,并从中找到进一步解题的有关信息,难度不大.2、(1)B,C;(2)2019年其他品牌的电视机年销售总量是115.2万台;(3)建议购买C品牌(建议购买B品牌),理由见解析【解析】【分析】(1)从条形统计图、折线统计图可以得出答案;(2)求出总销售量,“其它”的所占的百分比;(3)从市场占有率、平均销售量等方面提出建议.【详解】解:(1)由条形统计图可得,2014~2019年三种品牌电视机销售总量最多的是B品牌,是1746万台;由条形统计图可得,2014~2019年三种品牌电视机月平均销售量最稳定的是C品牌,比较稳定,极差最小;故答案为:B,C;(2)∵20×12÷25%=960(万台),1﹣25%﹣29%﹣34%=12%,∴960×12%=115.2(万台);答:2019年其他品牌的电视机年销售总量是115.2万台;(3)建议购买C品牌,因为C品牌2019年的市场占有率最高,且5年的月销售量最稳定;建议购买B品牌,因为B品牌的销售总量最多,受到广大顾客的青睐.【考点】本题考查了条形统计图,折线统计图,扇形统计图,认真审题,搞清三个统计图分别反映不同意义是解题关键.3、(1)200,16;(2)见解析;(3);(4)940人【解析】【分析】(1)B等级人数40人÷B等级的百分比为20%,利用抽查人数-其它各组人数即可;(2)C等级200×25%=50人,m=16即可补全频率分布直方图:(3)根据中位数定义即可求即;(4)成绩80分以上的在D、E两等级中人数占抽样的百分比47%乘以学生总数即可.【详解】解:(1)B等级人数40人,由扇形图可知B等级的百分比为20%,∴本次调查一共随机抽取了40÷20%=200名学生的成绩,C等级200×25%=50人∴m=200-40-50-70-24=16故答案为:200,16;(2)C等级200×25%=50人,m=16,补全频率分布直方图如图所示:(3)频率分布直方图已将数据从小到大排序,一共抽查200个数据,根据中位数定义中位数位于第100,101两位置上成绩的平均数,16+40=56100,16+40+50=106101,∴中位数在等级内;故答案为:C(4)成绩80分以上的在D、E两等级中人数为:70+24=94人,占抽样的百分比为94÷200×100%=47%,全校共有2000名学生,成绩优秀的学生有(人).答:全校2000名学生中,估计成绩优秀的学生有940人.【考点】本题考查频率分布直方图和扇形图获取信息,样本容量,补画频率分布直方图,中位数,用样本的百分比含量估计总体中的数目等知识,熟练掌握上述知识是关键.4、(1)40,10(2)平均数是2,众数是2,中位数是2【解析】【分析】(1)根据参加2项的人数和所占百分比即可求得总人数,再利用×100%=百分比,即可求解.(2)根据平均数、众数及中位数的含义即可求解.(1)解:由图可得,参加2项的人数有18人,占总体的45%,参加4项的有4人,则(人),,故答案为:40;10.(2)平均数:,∵在这组数据中,2出现了18次,出现的次数最多,∴这组数据的众数是2,∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是2,有,∴这组数据的中位数是2.则平均数是2,众数是2,中位数是2.【考点】本题考查了条形统计图和扇形统计图,平均数、众数和中位数的求法,理解两个统计图中的数量关系是解题的关键.5、(1)平均数为800升,中位数为800升;(2)12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,一个月估计可以节约用水3000升.【解析】【详解】试题分析:(1)根据平均数和中位数的定义求解可得;(2)用洗衣服的水量除以第3天的用水总量即可得;(3)根据条形图给出合理建议均可,如:将洗衣服的水留到冲厕所.试题解析:解:(1)这7天内小申家每天用水量的平均数为(815+780+800+785+790+825+805)÷7=800(升),将这7天的用水量从小到大重新排列为:780、785、790、800、805、815、825,∴用水量的中位数为800升;(2)×100%=12.5%.答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,每天可节约用水100升,一个月估计可以节约用水100×30=3000升.6、(1)200个;(2)应以中位数为生产目标,为180个.【解析】【分析】(1)根据加权平均数的定义求解可得;(2)根据众数和中位数的定义求解,再分别从平均数、中位数和众数的角度,讨论达标人数情况,从而得出结论.【详解】解:(1)根据题意得:×(600+480+220×3+180×3+120×3+90×4)=200(个),答:这一天15名工人生产零件的平均个数为200个;(2)∵共有15名工人,∴中位数为180个,众数为90个,若以平均数为生产目标,则达标的有5个,不够一半;若以中位数为生产目标,则达标的有8个,在一半左右;若以众数为生产目标,则众数为90,则达标的有15个,所有的人都达标;综上,应以中位数为生产目标,为180个.【考点】此题考查了平均数、众数、中位数的意义,中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论