版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省诸暨市中考数学真题分类(平行线的证明)汇编专项测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如图,将沿翻折,三个顶点恰好落在点处.若,则的度数为(
)A. B.C. D.2、给定下列条件,不能判定三角形为直角三角形的是(
)A.∠A:∠B:∠C=1∶2∶3 B.∠A+∠B=∠CC. D.∠A=2∠B=3∠C3、如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15° B.55° C.65° D.75°4、若△ABC三个角的大小满足条件∠A:∠B:∠C=1:3:4,则∠C的大小为(
)A.22.5° B.45° C.67.5° D.90°5、如图,在ABC中,∠ACB=90°,∠B-∠A=10°,D是AB上一点,将ACD沿CD翻折后得到CED,边CE交AB于点F.若DEF中有两个角相等,则∠ACD的度数为(
)A.15°或20° B.20°或30° C.15°或30° D.15°或25°6、如图,在△ABC中,∠C=70º,沿图中虚线截去∠C,则∠1+∠2=(
)A.360º B.250º C.180º D.140º7、如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°8、下列命题中,是真命题的有(
)①两条直线被第三条直线所截,同位角的平分线平行;②垂直于同一条直线的两条直线互相平行;③过一点有且只有一条直线与已知直线平行;④对顶角相等,邻补角互补.A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.2、如图,△ABC的外角∠DBC、∠ECB的角平分线交于点M,∠ACB的角平分线与BM的反向延长线交于点N,若在△CMN中存在一个内角等于另一个内角的2倍,则∠A的度数为_______3、如图,AB⊥BC于B,AB⊥AD于A,则∠C和∠D的关系是____.4、如图,在△ABC中,AD平分∠BAC,如果∠B=80°,∠C=40°,那么∠ADC的度数等于_____.5、如图,将三角形纸片ABC按如图方式折叠:折痕分别为DC和DE,点A与BC边上的点G重合,点B与DG延长线上的点F重合.若满足∠ACB=40°,则∠CEF=_______度.6、两条直线平行的条件(除平行线定义和平行公理推论外):两条直线被第三条直线所截,如果___________,那么这两条直线平行.这个判定方法可简述为:_________,两直线平行.7、如图所示,直线,直线c与直线a,b分别相交于点A、点B,AM⊥b,垂足为点M,若∠1=56°,则∠2=______.三、解答题(7小题,每小题10分,共计70分)1、如图,△ABC中,∠BAC=90°,点D是BC上的一点,将△ABC沿AD翻折后,点B恰好落在线段CD上的B'处,且AB'平分∠CAD.求∠BAB'的度数.2、已知:如图1,,BD平分,,过点A作直线,延长CD交MN于点E(1)当时,的度数为______.(2)如图2,当时,求的度数;(3)设,用含x的代数式表示的度数.3、如图,点D和点C在线段BE上,,,.求证:.4、如图,直线分别与直线,交于点,.平分,平分,且∥.求证:∥.5、如图,在△ABC中,D为AB边上一点,E为BC边上一点,∠BCD=∠BDC(1)若∠ACD=15°,∠CAD=40°,则∠B=度(直接写出答案);(2)请说明:∠EAB+∠AEB=2∠BDC的理由.6、如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC证明:∵∠1+∠AFE=180°∴CD∥EF(,)∵∠A=∠2
∴()(,)∴AB∥CD∥EF(,)∴∠A=,∠C=,(,)∵∠AFE=∠EFC+∠AFC,∴=.7、如图,在△ABC中,点D为∠ABC的平分线BD上一点,连接AD,过点D作EF∥BC交AB于点E,交AC于点F.(1)如图1,若AD⊥BD于点D,∠BEF=120°,求∠BAD的度数;(2)如图2,若∠ABC=α,∠BDA=β,求∠FAD十∠C的度数(用含α和β的代数式表示).-参考答案-一、单选题1、D【解析】【分析】根据翻折变换前后对应角不变,故∠B=∠EOF,∠A=∠DOH,∠C=∠HOG,∠1+∠2+∠HOD+∠EOF+∠HOG=360°,进而求出∠1+∠2的度数.【详解】解:∵将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,∴∠B=∠EOF,∠A=∠DOH,∠C=∠HOG,∠1+∠2+∠HOD+∠EOF+∠HOG=360°,∵∠HOD+∠EOF+∠HOG=∠A+∠B+∠C=180°,∴∠1+∠2=360°-180°=180°,∵∠1=40°,∴∠2=140°,故选:D.【考点】此题主要考查了翻折变换的性质和三角形的内角和定理,根据已知得出∠HOD+∠EOF+∠HOG=∠A+∠B+∠C=180°是解题关键.2、D【解析】【分析】根据三角形的内角和等于180°求出最大角,然后选择即可.【详解】解:A、最大角∠C=×180°=90°,是直角三角形,不符合题意;B、最大角∠C=180°÷2=90°,是直角三角形,不符合题意;C、设∠A=x,则∠B=2x,∠C=3x,所以,x+2x+3x=180°,解得x=30°,最大角∠C=3×30°=90°,是直角三角形,不符合题意;D、设∠A=x,则∠B=x,∠C=x,所以,,解得,是钝角三角形,符合题意.故选:D.【考点】本题考查了三角形的内角和定理,求出各选项中的最大角是解题的关键.3、D【解析】【分析】根据邻补角定义可得∠ADE=15°,由平行线的性质可得∠A=∠ADE=15°,再根据三角形内角和定理即可求得∠B=75°.【详解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故选D.【考点】本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键.4、D【解析】【分析】先用∠A表示出∠B、∠C,再根据三角形的内角和定理求出∠A、∠C得结论.【详解】解:∵∠A:∠B:∠C=1:3:4,∴∠B=3∠A,∠C=4∠A.∵∠A+∠B+∠C=180,∴∠A+3∠A+4∠A=180.∴∠A=22.5.∴∠C=4∠A=4×22.5=90.故选:D.【考点】本题考查了三角形的内角和定理,掌握“三角形的内角和等于180”是解决本题的关键.5、C【解析】【分析】由三角形的内角和定理可求解∠A=40°,设∠ACD=x°,则∠CDF=40°+x,∠ADC=180°-40°-x=140°-x,由折叠可知:∠ADC=∠CDE,∠E=∠A=40°,可分三种情况:当∠DFE=∠E=40°时;当∠FDE=∠E=40°时;当∠DFE=∠FDE时,根据∠ADC=∠CDE列方程,解方程可求解x值,即可求解.【详解】解:在△ABC中,∠ACB=90°,∴∠B+∠A=90°,∵∠B-∠A=10°,∴∠A=40°,∠B=50°,设∠ACD=x°,则∠CDF=40°+x,∠ADC=180°-40°-x=140°-x,由折叠可知:∠ADC=∠CDE,∠E=∠A=40°,当∠DFE=∠E=40°时,∵∠FDE+∠DFE+∠E=180°,∴∠FDE=180°-40°-40°=100°,∴140°-x=100°+40°+x,解得x=0(不存在);当∠FDE=∠E=40°时,∴140°-x=40°+40°+x,解得x=30°,即∠ACD=30°;当∠DFE=∠FDE时,∵∠FDE+∠DFE+∠E=180°,∴∠FDE==70°,∴140°-x=70°+40°+x,解得x=15,即∠ACD=15°,综上,∠ACD=15°或30°,故选:C.【考点】本题主要考查直角三角形的性质,等腰三角形的性质,三角形的内角和定理,根据∠ADC=∠CDE分三种情况列方程是解题的关键.6、B【解析】【分析】根据三角形内角和定理得出∠A+∠B=110°,进而利用四边形内角和定理得出答案.【详解】解:∵△ABC中,∠C=70°,∴∠A+∠B=180°-∠C,∴∠1+∠2=360°-110°=250°,故选:B.【考点】本题主要考查了多边形内角和定理,根据题意得出∠A+∠B的度数是解题关键.7、D【解析】【分析】同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.【详解】解:(同位角相等,两直线平行),故A不符合题意;∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意;(同位角相等,两直线平行)故C不符合题意;∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,所以不能判定故D符合题意;故选D【考点】本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.8、A【解析】【分析】根据平行线的性质及基本事实,对顶角及邻补角的性质进行判断.【详解】两条平行线被第三条直线所截,同位角的平分线平行,故①是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故②是假命题;过直线外一点有且只有一条直线与已知直线平行,故③是假命题;对顶角相等,邻补角互补,故④是真命题.故选A.【考点】本题考查命题的真假判断,熟练掌握平行线的性质,对顶角及邻补角的性质是解题的关键.二、填空题1、如果两个角互为对顶角,那么这两个角相等【解析】【分析】根据命题的形式解答即可.【详解】将“对顶角相等”改写为“如果...那么...”的形式,可写为如果两个角互为对顶角,那么这两个角相等,故答案为:如果两个角互为对顶角,那么这两个角相等.【考点】此题考查命题的形式,可写成用关联词“如果...那么...”连接的形式,准确确定命题中的题设和结论是解题的关键.2、或或【解析】【分析】根据,的角平分线交于点,可求得,延长至,根据为的外角的角平分线,可得是的外角的平分线,根据平分,得到,则有,可得,可求得;再根据,分四种情况:①;②;③;④,分别讨论求解即可.【详解】解:外角,的角平分线交于点,∴;如图示,延长至,为的外角的角平分线,是的外角的平分线,,平分,,,,即,又,∴,即;;如果中,存在一个内角等于另一个内角的2倍,那么分四种情况:①,则,;②,则,,;③,则,解得;④,则,解得.综上所述,的度数是或或.【考点】本题是三角形综合题,考查了三角形内角和定理、外角的性质,角平分线定义等知识;灵活运用三角形的内角和定理、外角的性质进行分类讨论是解题的关键.3、互补【解析】【详解】因为AB⊥BC,AB⊥AD,所以,所以AD//BC,所以,即∠C和∠D的关系是互补.故答案:互补.4、110°##110度【解析】【分析】由三角形的内角和可求得∠BAC=60°,再由角平分线的定义得∠BAD=30°,利用三角形的外角性质即可求∠ADC的度数.【详解】解:∵∠B=80°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=60°,∵AD平分∠BAC,∴∠BAD=∠BAC=30°,∴∠ADC=∠B+∠BAD=110°.故答案为:110°.【考点】本题主要考查三角形的外角性质,三角形的内角和定理,角平分线的定义,解答的关键是对相应的知识的掌握.5、40【解析】【详解】由折叠可得∠EDC=90°,∠BED=∠FED,由角平分线和三角形内角和得∠DEC=70°,再利用三角形外角的性质可得答案.【解答】解:由折叠可得:∠EDF=,,∵∠BDF+∠GDA=180°,∴∠EDF+∠GDC=90°,∵∠ACB=40°,∴∠GCD=40÷2=20°,∴∠DEC=180°﹣90°﹣20°=70°,由折叠可得:∠BED=∠DEF=70°+∠CEF,由三角形外角的性质可得,∠BED=90°+20°=110°,∴70°+∠CEF=110°,即∠CEF=40°.故答案为:40.【考点】本题考查图形的折叠,熟知折叠前后图形的形状和大小相等、得到∠BED=∠DEF并利用三角形内角和是解本题的关键,属于常见题型.6、
同位角相等(答案不唯一)
同位角相等(答案不唯一)【解析】【分析】根据平行线的判定定理解答即可.【详解】两条直线平行的条件(除平行线定义和平行公理推论外):两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.这个判定方法可简述为:同位角相等,两直线平行.故答案为:同位角相等,同位角相等.【考点】本题主要考查平行线的判定定理,属于基础题,熟练掌握平行线的判定定理是解题关键.7、34°##34度【解析】【分析】先根据平行线的性质得出∠ABM的度数,再由三角形内角和定理求出∠2的度数即可.【详解】:解:∵直线,∠1=56°,∴∠ABM=∠1=56°,∵AM⊥b,垂足为点M,∴∠AMB=90°,∴∠2=180°−∠AMB−∠ABM=180°−56°−90°=34°,故答案为:34°.【考点】本题考查三角形中求角度问题,涉及到平行线的性质、三角形内角和定理,在求角度问题中,熟练运用三角形内角和是180°是解决问题的关键.三、解答题1、60°【解析】【分析】由折叠和角平分线可求∠BAD=30°,即可求出∠BAB'的度数.【详解】解:由折叠可知,∠BAD=∠B'AD,∵AB'平分∠CAD.∴∠B'AC=∠B'AD,∴∠BAD=∠B'AC=∠B'AD,∵∠BAC=90°,∴∠BAD=∠B'AC=∠B'AD=30°,∴∠BAB'=60°.【考点】本题考查了折叠和角平分线,解题关键是掌握折叠角相等和角平分线的性质.2、(1)(2)(3)【解析】【分析】(1)根据题意证明,进而可得,根据,即可求解.继而可得,即可求得;(2)根据全等三角形的性质可得,根据三角形内角和定理可得,进而根据即可求解.(3)根据(1)(2)的方法分类讨论即可求解.(1)解:BD平分,,,,,,,,,,,故答案为:,(2)解:由(1)可知,,,,,,,(3)解:设,,,,,当点在点的左侧时,,当点在点的右侧时,,.【考点】本题考查了全等三角形的性质与判定,三角形的内角和定理的应用,掌握全等三角形的性质与判定是解题的关键.3、见解析【解析】【分析】根据平行线的性质证(SAS)即可求证;【详解】证明:∵,∴.∴.∵,∴.在和中∵∴(SAS).∴∴.【考点】本题主要考查三角形的全等证明、平行线的性质,掌握相关知识并灵活应用是解题的关键.4、证明见解析.【解析】【分析】先根据角平分线的定义可得,再根据平行线的性质可得,从而可得,然后根据平行线的判定即可得证.【详解】平分,平分,即.【考点】本题考查了平行线的判定与性质、角平分线的定义等知识点,熟记平行线的判定与性质是解题关键.5、(1)70(2)见解析【解析】【分析】(1)利用三角形的外角性质可求出∠BDC的度数,结合∠BCD=∠BDC可得出∠BCD的度数,再在△BCD中,利用三角形内角和定理可求出∠B的度数;(2)在△ABE中,利用三角形内角和定理可得出∠EAB+∠AEB=180°﹣∠B,在△BCD中,利用三角形内角和定理及∠BCD=∠BDC可得出2∠BDC=180°﹣∠B,进而可得出∠EAB+∠AEB=2∠BDC.(1)解:∵∠ACD=15°,∠CAD=40°,∴∠BDC=∠ACD+∠CAD=55°,∴∠BCD=∠BDC=55°.在△BCD中,∠BDC+∠BCD+∠B=180°,∴∠B=180°﹣55°﹣55°=70°.故答案为:70;(2)解:在△ABE中,∠EAB+∠AEB+∠B=180°,∴∠EAB+∠AEB=180°﹣∠B.在△BCD中,∠BDC+∠BCD+∠B=180°,∠BCD=∠BDC,∴2∠BDC=180°﹣∠B,∴∠EAB+∠AEB=2∠BDC.【考点】本题考查了三角形内角和定理以及三角形的外角性质,解题的关键是:(1)利用三角形的外角性质,求出∠BDC的度数;(2)利用三角形内角和定理,找出∠EAB+∠AEB=180°﹣∠B及2∠BDC=180°﹣∠B.6、同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC.【解析】【分析】根据同旁内角互补,两直线平行可得CD∥EF,根据∠A=∠2利用同位角相等,两直线平行,AB∥CD,根据平行同一直线的两条直线平行可得AB∥
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论