考点解析河北石家庄市42中7年级数学下册第六章 概率初步专项测试练习题_第1页
考点解析河北石家庄市42中7年级数学下册第六章 概率初步专项测试练习题_第2页
考点解析河北石家庄市42中7年级数学下册第六章 概率初步专项测试练习题_第3页
考点解析河北石家庄市42中7年级数学下册第六章 概率初步专项测试练习题_第4页
考点解析河北石家庄市42中7年级数学下册第六章 概率初步专项测试练习题_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北石家庄市42中7年级数学下册第六章概率初步专项测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、数学老师将全班分成7个小组开展小组合作学习,采用随机抽签的办法确定一个小组进行展示活动,则第2小组被抽到的概率是()A. B. C. D.2、下列说法正确的是()A.在同一年出生的400名学生中,至少有两人的生日是同一天B.某种彩票中奖的概率是1%,买100张这种彩票一定会中奖C.天气预报明天下雨的概率是50%,所以明天将有一半的时间在下雨D.抛一枚图钉,钉尖着地和钉尖朝上的概率一样大3、下列事件中是必然事件的是()A.小菊上学一定乘坐公共汽车B.某种彩票中奖率为1%,买10000张该种票一定会中奖C.一年中,大、小月份数刚好一样多D.将豆油滴入水中,豆油会浮在水面上4、以下事件为随机事件的是()A.通常加热到100℃时,水沸腾B.篮球队员在罚球线上投篮一次,未投中C.任意画一个三角形,其内角和是360°D.半径为2的圆的周长是5、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个,搅拌均匀后,随机抽取一个小球,是红球的概率为()A. B. C. D.6、一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是白球的概率为()A. B. C. D.7、下列说法正确的是()A.“明天有雪”是随机事件B.“太阳从西方升起”是必然事件C.“翻开九年数学书,恰好是第35页”是不可能事件D.连续抛掷100次质地均匀的硬币,55次正面朝上,因此正面朝上的概率是55%8、一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,这些球除颜色外完全相同,其中有3个黄球,2个蓝球.则随机摸出一个红球的概率为()A. B. C. D.9、已知粉笔盒里有8支红色粉笔和n支白色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,取出红色粉笔的概率是,则n的值是()A.10 B.12 C.13 D.1410、袋中有白球3个,红球若干个,他们只有颜色上的区别.从袋中随机取出一个球,如果取到白球的可能性更大,那么袋中红球的个数可能是()A.2个 B.3个C.4个 D.4个或4个以上第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、不透明的袋子里装有红球2个,绿球1个,除颜色外无其他差别,每次摸球前先将球摇匀,摸出一个后记下颜色再放回袋中,连续摸球两次为一红一绿的概率是__.2、班会课上,小强与班上其他32名同学每人制作了一张贺卡放在一个盒子里,小强从盒子中任意地取一张.恰好抽到自己制作的那张贺卡的可能性为__________.3、(1)“同时投掷两枚骰子,朝上的数字相乘为7”的概率是_______(2)在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球实验后,发现摸到白球的频率约为40%,估计袋中白球有____个.4、P(A)的取值范围:∵m≥0,n>0,∴0≤m≤n.∴0≤m/n≤1,即_______≤P(A)≤_______.当A为必然事件时,P(A)=__________;当A为不可能事件时,P(A)=_________.事件发生的可能性越大,它的概率越接近____;反之,事件发生的可能性越小,它的概率越接近______.5、一个袋中有形状材料均相同的白球2个红球4个,任意摸一个球是红球的概率______.6、一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是()A.B.C.D.第一步列举出所有________的结果:正正、反反、正反、反正第二步根据概率公式计算:P(两枚硬币都正面朝上)=______7、一般地,对于一个随机事件A,把刻画其发生可能性大小的数值,称之为随机事件A发生的__________,记为________.一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=________.8、“任意买一张电影票,座位号是2的倍数”,此事件是______事件.(填“确定”或“不确定”).9、袋中装有3个黑球,6个白球(这些球除颜色外都相同),随机摸出一个球,恰好是白球的概率是________________.10、一枚质地均匀的骰子的六个面上分别刻有1~6的点数,抛掷这枚骰子,若抛到偶数的概率记作,抛到奇数的概率记作,则与的大小关系是______.三、解答题(6小题,每小题10分,共计60分)1、一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的频率是,求从袋中取出黑球的个数.2、节假日期间,某超市开展有奖促销,凡在超市购物的顾客均有转动转盘的机会(如图,转盘被分为8个扇形),规定当转盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中三等奖;指向其余数字不中奖.(1)转动转盘中一等奖、二等奖、三等奖的概率分别是多少?(2)顾客中奖的概率是多少?3、如图,一个质地均匀的转盘被平均分成6等份,分别标有1,2,3,4,5,6这6个数字.转动转盘,当转盘停止后,指针指向的数字即为转出的数字,求:(1)指针指向数字5的概率;(2)指针指向数字是偶数的概率;(3)请你用这个转盘设计一个游戏,使自己获胜的概率为.4、在一个不透明的口袋里装有4个白球和6个红球,它们除颜色外完全相同.(1)事件“从口袋里随机摸出一个球是绿球”发生的概率是__________;(2)事件“从口袋里随机摸出一个球是红球”发生的概率是__________;(3)从口袋里取走x个红球后,再放入x个白球,并充分摇匀,若随机摸出白球的概率是,求x的值.5、足球比赛前,由裁判员拋掷一枚硬币,若正面向上则由甲队首先开球,若反面向上则由乙队首先开球,这种确定首先开球一方的做法对参赛的甲、乙两队公平吗?为什么?6、有7张纸签,分别标有数字1,2,3,4,5,6,7,小明从中任意抽取一张纸签(不放回),小颖从剩余的纸签中任意抽取一张,谁抽到的数字大谁就获胜,然后两人把抽到的纸签都放回,重新开始游戏.(1)现小明已经抽到数字4,然后小颖抽纸签,那么小明获胜的概率是多少?小颖获胜的概率又是多少?(2)若小明已经抽到数字6,小明、小颖获胜的概率分别是多少?若小明已经抽到数字1,情况又如何?-参考答案-一、单选题1、B【分析】根据概率是所求情况数与总情况数之比,可得答案.【详解】解:第3个小组被抽到的概率是,故选:B.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.2、A【分析】由题意根据概率的意义、随机事件的意义逐项进行分析判断即可.【详解】解:A.在同一年出生的400名学生中,至少有两人的生日是同一天,因为一年最多有366天,故本选项正确;B.某种彩票中奖的概率是1%,买100张这种彩票一定会中奖错误,故本选项错误;C.天气预报明天下雨的概率是50%,所以明天将有一半的时间在下雨错误,故本选项错误;D.抛一枚图钉,钉尖着地和钉尖朝上的概率一样大错误,故本选项错误;故选:A.【点睛】本题考查随机事件、概率的意义,熟练掌握随机事件和概率的意义是正确判断的前提.3、D【分析】必然事件就是一定发生的事件,根据定义即可解答.【详解】解:A、小菊上学乘坐公共汽车是随机事件,不符合题意;B、买10000张一定会中奖也是随机事件,尽管中奖率是1%,不符合题意;C、一年中大月份有7个,小月份有5个,不相等,是不可能事件,不符合题意;D、常温下油的密度<水的密度,所以油一定浮在水面上,是必然事件,符合题意.故选:D.【点睛】用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、B【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A.通常加热到100℃时,水沸腾是必然事件;B.篮球队员在罚球线上投篮一次,未投中是随机事件;C.任意画一个三角形,其内角和是360°是不可能事件;D.半径为2的圆的周长是是必然事件;故选:B.【点睛】考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、A【分析】用红球的个数除以所有球的个数即可求得抽到红球的概率.【详解】解:∵共有5个球,其中红球有2个,∴P(摸到红球)=,故选A.【点睛】此题主要考查概率的意义及求法.用到的知识点为:概率=所求情况数与总情况数之比.掌握概率的意义是解题关键.6、A【分析】让白球的个数除以球的总数即为摸到白球的概率.【详解】解:袋子里装有2个红球、3个黄球和5个白球共10个球,从中摸出一个球是白球的概率是.故选:A.【点睛】本题考查了概率公式的简单应用,熟知概率=所求情况数与总情况数之比是解题的关键.7、A【分析】直接利用随机事件的定义以及概率的意义分别分析得出答案.【详解】解:A、“明天有雪”是随机事件,该选项正确,符合题意;B、“太阳从西方升起”是不可能事件,原说法错误,该选项不符合题意;C、“翻开九年数学书,恰好是第35页”是随机事件,原说法错误,该选项不符合题意;D、连续抛掷100次质地均匀的硬币,55次正面朝上,因此正面朝上的概率是55%,说法错误,该选项不符合题意;故选:A.【点睛】本题主要考查了概率的意义以及随机事件,正确把握定义是解题关键.8、D【分析】在一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,其中有3个黄球,2个蓝球,得出红球的个数,再根据概率公式即可得出随机摸出一个红球的概率.【详解】解:在一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,其中有3个黄球,2个蓝球,红球有:个,则随机摸出一个红球的概率是:.故选:D.【点睛】本题主要考查了概率公式的应用,解题的关键是掌握:概率所求情况数与总情况数之比.9、B【分析】根据概率求解公式列方程计算即可;【详解】由题意得:,解得:n=12.经检验:n=12是方程的解.故选B.【点睛】本题主要考查了概率公式的应用,准确计算是解题的关键.10、A【分析】根据取到白球的可能性较大可以判断出白球的数量大于红球的数量,从而得解.【详解】解:∵袋中有白球3个,取到白球的可能性较大,∴袋中的白球数量大于红球数量,即袋中红球的个数可能是2个或2个以下.故选:A.【点睛】本题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.二、填空题1、【分析】根据概率公式计算概率即可【详解】解:列表如下:红红绿红(红,红)(红,红)(绿,红)红(红,红)(红,红)(绿,红)绿(红,绿)(红,绿)(绿,绿)由表知,共有9种等可能结果,其中连续摸球两次为一红一绿的有4种结果,所以连续摸球两次为一红一绿的概率为,故答案为:【点睛】本题考查了概率的计算,正确画出表格是解题关键.2、【分析】根据题意,共有1+32=33个学生,由概率=所求情况数与总情况数之比即可得出答案.【详解】解:根据题意得:;答:正好抽到自己那一张的可能性为;故答案为:.【点睛】本题考查的是概率的公式,用到的知识点为:概率=所求情况数与总情况数之比.3、04【分析】(1)朝上的数字相乘为7是不可能发生的,据此即可求解;(2)根据摸到白球的概率公式,列出方程求解即可.【详解】解:(1)朝上的数字相乘为7是不可能发生的.故“同时投掷两枚骰子,朝上的数字相乘为7”的概率是0.故答案为:0;(2)不透明的布袋中的小球除颜色不同外,其余均相同,共有10个小球,设其中白色小球x个,根据概率公式知:P(白色小球)==40%,解得:x=4.故答案为:4.【点睛】本题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4、011010【详解】略5、【分析】利用概率公式直接求解即可.【详解】解:∵袋中有形状材料均相同的白球2个,红球4个,共6个球,∴任意摸一个球是红球的概率.故答案为:.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6、等可能【详解】略7、概率P(A)【详解】略8、不确定【分析】根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件.随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.【详解】根据题意,座位号可能是奇数可能是偶数,所以此事件是随机事件,即不确定事件.故答案为:不确定.【点睛】本题考查了确定事件和随机事件,理解定义是解题的关键.9、【分析】求出摸出一个球的所有可能结果数及摸出一个白球的所有结果数,由概率计算公式即可得到结果.【详解】根据题意可得:袋子里装有将9个球,其中6个白色的,摸出一个球的所有可能结果数为9,摸出一个白球的所有结果数为6,则任意摸出1个,摸到白球的概率是=.故答案为:.【点睛】本题考查了简单事件概率的计算,求出事件所有可能的结果数及某事件发生的所有可能结果数是解题的关键.10、【分析】直接利用概率公式求出P1,P2的值,进而得出答案.【详解】解:由题意可得出:一枚质地均匀的骰子的六个面上分别刻有1~6的点数,偶数有2、4、6共3个,奇数有1、3、5共3个,抛到偶数的概率为P1=;抛到奇数的概率为P2=,故P1与P2的大小关系是:P1=P2.故答案为:P1=P2.【点睛】本题主要考查了概率公式的应用,熟练利用概率公式求出是解题关键.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.三、解答题1、2个.【分析】首先设从袋中取出个黑球,根据题意得方程,继而求得答案.【详解】解:设从袋中取出个黑球,根据题意得:,解得:,经检验,是原分式方程的解,答:从袋中取出黑球的个数为2个.【点睛】此题考查了概率公式的应用,熟练掌握概率所求情况数与总情况数之比是解题的关键.2、(1),,;(2)【分析】(1)分别求出数字8,2和6,1和3和5所占的份数即可求出转动转盘中一等奖、二等奖、三等奖的概率;(2)求出8,2,6,1,3,5份数之和即可得到顾客中奖的概率.【详解】解:(1)由题意可知:,,;(2)8,2,6,1,3,5份数之和为6,转动圆盘中奖的概率为:.【点睛】此题考查概率的求法:如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A).3、(1)P(指向数字5);(2)P(指向偶数);(3)(答案不唯一)自由转动转盘,当它停止时,指针指向的数字不大于4时,自己获胜【分析】(1)转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,指针指向数字5的只有1种,由概率公式可得;(2)转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,指针指向数字偶数的有2,4,6,共3种,由概率公式可得;(3)由获胜概率为,由概率公式可得有4种能性,从而设计出指针指向的数字不大于4获胜;【详解】解:(1)转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,指针指向数字5的只有1种,由概率公式可得:P(指向数字5);(2)转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,指针指向数字偶数的有2,4,6,共3种,由概率公式可得:P(指向偶数);(3)设计游戏为:指针指向的数字不大于4获胜,其获胜概率为,理由如下:转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,指针指向的数字不大于4有1,2,3,4,共4种,由概率公式得:P(指向数字不大于4).【点睛】本题主要考查随机事件及其概率的计算,列举出所有等可能出现的结果情况及所求事件包含的情况数是计算相应事件发生概率的关键.4、(1)0;(2);(3)【分析】(1)根据口袋中没有黑球,不可能摸出黑球,从而得出发生的概率为0;(2)用红球的个数除以总球的个数即可;(3)根据概率公式列出算式,求出x的值即可得出答案.【详解】解:解:(1)∵口袋中装有4个白球和6个红球,∴从口袋中随机摸出一个球是绿球是不可能事件

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论