解析卷-河北师大附中7年级数学下册第五章生活中的轴对称专题练习试卷(含答案解析)_第1页
解析卷-河北师大附中7年级数学下册第五章生活中的轴对称专题练习试卷(含答案解析)_第2页
解析卷-河北师大附中7年级数学下册第五章生活中的轴对称专题练习试卷(含答案解析)_第3页
解析卷-河北师大附中7年级数学下册第五章生活中的轴对称专题练习试卷(含答案解析)_第4页
解析卷-河北师大附中7年级数学下册第五章生活中的轴对称专题练习试卷(含答案解析)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北师大附中7年级数学下册第五章生活中的轴对称专题练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、下列图形不是轴对称图形的是()A. B. C. D.2、下列四个图案中是轴对称图形的是()A. B.C. D.3、自新冠肺炎疫情发生以来,莆田市积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图是()A.有症状早就医 B.打喷捂口鼻C.防控疫情我们在一起 D.勤洗手勤通风4、下列垃圾分类的标识中,是轴对称图形的是()A.①② B.③④ C.①③ D.②④5、下列图形中,是轴对称图形的是()A. B. C. D.6、下列学习类APP的图表中,可看作是轴对称图形的是()A. B. C. D.7、下列图形中,不是轴对称图形的是().A. B. C. D.8、如图,四边形ABCD是轴对称图形,直线AC是它的对称轴,若∠BAC=85°,∠B=25°,则∠BCD的大小为()A.150° B.140° C.130° D.120°9、下列各图中不是轴对称图形的是()A. B.C. D.10、下列图形中,是轴对称图形的是()A. B.C. D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图,直角三角形纸片的两直角边分别为6和8,现将△ABC折叠,使点A与点B重合,折痕为DE,则△CBE的周长是___.2、将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD大小为_____度.3、如图,若P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1、P2,连接P1P2交OA于M,交OB于N,P1P2=24,则△PMN的周长是___.若∠MPN=90°,则∠P1PP2的度数为___.4、如图,把一张长方形纸片ABCD的一角沿AE折叠,点D的对应点落在∠BAC的内部,若∠CAE=2∠,且∠=15°,则∠DAE的度数为____________.5、若点M(3,a),N(a,b)关于x轴对称,则a+b=_____.6、如图,把一张长方形纸片沿折叠,点D与点C分别落在点和点的位置上,与的交点为G,若,则为______度.7、已知点P(a,3)、Q(﹣2,b)关于x轴对称,则a+b=_____.8、如图,长方形纸片ABCD中AD∥BC,AB∥CD,∠A=90°,将纸片沿EF折叠,使顶点C、D分别落在点C'、D'处,C'E交AF于点G.若∠CEF=68°,则么∠GFD'=______°.9、梯形(如图)是有由一张长方形纸折叠而成的,这个梯形的面积是(______).10、如图的三角形纸片中,AB=8,BC=6,AC=5,沿过点B的直线折叠这个三角形,使得点C落在AB边上的点E处,折痕为BD,则△AED的周长=____.三、解答题(6小题,每小题10分,共计60分)1、如图,正方形网格中每个小正方形边长都是1,画出关于直线对称的.2、求证:全等三角形的对应边上的角平分线相等.(把图形补充完整,并写出已知、求证和证明).3、(阅读与理解)折纸,常常能为证明一个命题提供思路和方法,例如,在△ABC中,AB>AC(如图),怎样证明∠C>∠B呢?(分析)把AC沿∠A的角平分线AD翻折,因为AB>AC,所以点C落在AB上的点C’处,即AC=AC’,据以上操作,易证明△ACD≌△AC’D,所以∠AC’D=∠C,又因为∠AC’D>∠B,所以∠C>∠B.(感悟与应用)(1)如图(1),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,试判断AC和AD、BC之间的数量关系,并说明理由;(2)如图(2),在四边形ABCD中,AC平分∠DAB,CD=CB.求证:∠B+∠D=180°.4、如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△A1B1C1;(2)△A1B1C1的面积为______;(3)线段CC1被直线l______.5、如图,在边长为1的小正方形组成的正方形网格中,点A,B,C在小正方形的顶点上.(1)画出与△ABC关于直线l成轴对称的△A'B'C;(2)在直线l上找一点P(在图中标出)使PB+PC的长最短,并求出这个最短长度.6、如图,平面直角坐标系中,△ABC的顶点A(0,-2),B(2,-4),C(4,-1);(1)画出与△ABC关于轴对称的图形△A1B1C1,并写出点B1的坐标;(2)四边形AA1C1C的面积为___________-参考答案-一、单选题1、B【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】选项A、C、D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,选项B不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,故选:B.【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴位置.2、D【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;D、是轴对称图形,符合题意.故答案为:D.【点睛】本题考查了轴对称图形,解题关键是掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3、C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行解答即可.【详解】解:A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、是轴对称图形,故C符合题意;D、不是轴对称图形,故D不符合题意.故选C.【点睛】本题主要考查了轴对称图形,正确掌握轴对称图形的性质是解题关键.4、B【详解】解:图③和④是轴对称图形,故选:B.【点睛】本题考查了轴对称图形,熟记轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.5、D【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:选项A、B、C均不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;选项D能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:D.【点睛】本题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6、C【分析】根据轴对称图形的定义逐一进行判断即可得答案.【详解】A.不是轴对称图形,故该选项不符合题意,B.不是轴对称图形,故该选项不符合题意,C.是轴对称图形,故该选项符合题意,D.不是轴对称图形,故该选项不符合题意,故选:C.【点睛】本题考查的是轴对称图形,如果一个图形沿着一条直线对折后两部分完全重合,那么这样的图形就叫做轴对称图形;轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7、A【详解】解:A、不是轴对称图形,故本选项符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意;故选:A【点睛】本题主要考查了轴对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形是解题的关键.8、B【分析】根据三角形内角和的性质可求得,再根据对称的性质可得,即可求解.【详解】解:根据三角形内角和的性质可求得由轴对称图形的性质可得,∴故选:B【点睛】此题考查了三角形内角和的性质,轴对称图形的性质,解题的关键是掌握并利用相关基本性质进行求解.9、B【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【详解】解:A、等边三角形是轴对称图形,不合题意;B、平行四边形不是轴对称图形,符合题意;C、正方形是轴对称图形,不符合题意;D、圆是轴对称图形,不合题意;故选:B.【点睛】本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10、A【分析】根据轴对称图形的定义:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,进行判断即可.【详解】解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意;故选:A.【点睛】本题考查了轴对称图形的识别,熟记定义是解本题的关键.二、填空题1、14【分析】根据图形翻折变换的性质得出AE=BE,进而可得出△CBE的周长=AC+BC.【详解】解:∵△BDE是△ADE翻折而成,∴AE=BE,∴△CBE的周长=BC+BE+CE=BC+AE+CE=BC+AC,∵角三角形纸片的两直角边长分别为6和8,∴△CBE的周长是14.故答案为:14.【点睛】本题考查的是图形翻折变换的性质,熟知“折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等”的知识是解答此题的关键.2、90【分析】根据折叠的性质得到∠ABC=∠A′BC,∠EBD=∠E′BD,再根据平角的定义有∠ABC+∠A′BC+∠EBD+∠E′BD=180°,易得∠A′BC+∠E′BD=180°×=90°,则∠CBD=90°.【详解】因为一张长方形纸片沿BC、BD折叠,所以∠ABC=∠A′BC,∠EBD=∠E′BD,而∠ABC+∠A′BC+∠EBD+∠E′BD=180°,所以∠A′BC+∠E′BD=180°×=90°,即∠CBD=90°.故答案为:90【点睛】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应相等相等.也考查了平角的定义.3、24【分析】①根据轴对称的性质可得,,然后根据三角形的周长定义求出的周长为P1P2,从而得解;②根据等边对等角可得:,,由三角形外角的性质可得:,,再根据三角形内角和定理得:,最后依据各角之间得数量关系即可求出答案.【详解】解:①如图,∵P点关于OA、OB的对称点P1,P2,∴,,的周长,∵,∴的周长为24;②∵,,∴,,∴,,∵,∴,∴,∴;故①答案为:24;②答案为:.【点睛】题目主要考查轴对称的性质及等腰三角形的性质,三角形外角和定理等知识点,熟练掌握各知识点间的相互联系,融会贯通综合运用是解题关键.4、【分析】由折叠的性质可知,再根据长方形的性质可知,结合题意整理即可求出的大小,从而即可求出的大小.【详解】根据折叠的性质可知,由长方形的性质可知,即,∵,,∴,∴,∴,∴.故答案为:【点睛】本题考查矩形的性质,折叠的性质.利用数形结合的思想是解答本题的关键.5、2【分析】根据题意直接利用关于x轴对称点的性质,得出a,b的值即可.【详解】解:∵点M和点N关于x轴对称∴3=a,a-2+b=0∴a=3,b=-1∴a+b=2.故答案为:2.【点睛】本题主要考查关于x轴对称点的性质,正确记忆横纵坐标关系是解题的关键.6、【分析】由折叠的性质可以得,从而求出,再由平行线的性质得到.【详解】解:由折叠的性质可知,,∵∠EFG=55°,∴,∴,∵四边形ABCD是长方形∴AD∥BC,DE∥,∴,故答案为:70.【点睛】本题主要考查了折叠的性质,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.7、-5【分析】根据关于x轴对称的点横坐标相同,纵坐标互为相反数即可得出结果.【详解】解:∵点P(a,3)与点Q(﹣2,b)关于x轴对称,∴a=﹣2,b=﹣3,∴a+b=﹣2﹣3=﹣5.故答案为:﹣5.【点睛】本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,难度适中.8、44【分析】根据平行线的性质和翻折不变性解答.【详解】解:∵ADBC,∴∠DFE=180°−∠CEF=180°−68°=112°,∴∠D′FE=112°,∠GFE=180°−112°=68°,∴∠GFD′=112°−68°=44°.故答案为:44.【点睛】本题考查了平行线的性质和翻折不变性,注意观察图形.9、69【分析】通过观察图形可知,这个梯形上底是9cm,下底是(9+5)cm,高是6cm,根据梯形的面积公式:S=(a+b)h÷2,把数据代入公式解答【详解】解:根据折叠可得梯形上底是9cm,下底是(9+5)cm,高是6cm(9+9+5)×6÷2=23×6÷2=138÷2=69()故答案为:69【点睛】此题主要考查梯形面积公式的灵活运用,关键是熟记公式10、7【分析】根据折叠的性质,可得BE=BC=6,CD=DE,从而AE=AB-BE=2,再由△AED的周长=AD+DE+AE,即可求解.【详解】解:∵沿过点B的直线折叠这个三角形,使得点C落在AB边上的点E处,∴BE=BC=6,CD=DE,∵AB=8,∴AE=AB-BE=2,∴△AED的周长=AD+DE+AE=AD+CD+AE=AC+DE=5+2=7.故答案为:7【点睛】本题主要考查了折叠的性质,熟练掌握折叠前后对应线段相等,对应角相等是解题的关键.三、解答题1、见解析【分析】先分别画出点A、B、C关于直线l的对称点,然后顺次连接即可.【详解】解:如图,为所作:.【点睛】本题考查了作图-轴对称变换:几何图形都可看作是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.2、见解析【分析】根据命题写出已知、求证,然后根据全等三角形的性质和三角形的角平分线性质得出AB=DE,∠B=∠E,∠BAM=∠EDN,再根据全等三角形的判定定理ASA证明△ABM≌△DEM即可解答.【详解】已知:如图,△ABC≌△DEF,AM、DN分别是△ABC、△DEF的角平分线,求证:AM=DN.证明:∵△ABC≌△DEF,∴AB=DE,∠B=∠E,∠BAC=∠EDF,∵AM、DN分别是△ABC、△DEF的角平分线,∴∠BAM=∠BAC,∠EDN=∠EDF,∴∠BAM=∠EDN,在△ABM和△DEN中,∴△ABM≌△DEM(ASA),∴AM=DN.【点睛】本题考查命题、全等三角形的判定与性质、角平分线的性质,证明线段相等,一般转化为三角形全等,因此熟练掌握全等三角形的判定与性质是解答的关键.3、(1)AC+AD=BC;(2)证明见解答过程;【分析】(1)把AC沿∠ACB的角平分线CD翻折,点A落在BC上的点A′处,连接A′D,根据直角三角形的性质求出∠A,根据三角形的外角性质得到∠A′DB=∠B,根据等腰三角形的判定定理得到A′D=A′B,结合图形计算,证明结论;(2)将AD沿AC翻折,使D落在AB上的D′处,连接CD′,根据全等三角形的性质得到CD=CD′=BC,∠D=∠AD′C,进而证明结论;【详解】(1)解:AC+AD=BC,理由如下:如图,把AC沿∠ACB的角平分线CD翻折,点A落在BC上的点A′处,连接A′D,∵∠ACB=90°,∠B=30°,∴∠A=90°-∠B=60°,由折叠的性质可知,CA′=CA,A′D=AD,∠CA′D=∠A=60°,∵∠B=30°,∴∠A′DB=∠CA′D-∠B=30°,∴∠A′DB=∠B,∴A′D=A′B,∴AD=A′B,∴BC=CA′+A′B=AC+AD;(2)证明:如图,将AD沿AC翻折,使D落在AB上的D′处,连接CD′,则△ADC≌△AD′C,∴CD=CD′=BC,∠D=∠AD′C,∴∠B=∠BD′C,∵∠BD′C+∠AD′C=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论