解析卷浙江省奉化市中考数学真题分类(勾股定理)汇编章节练习试卷(含答案详解)_第1页
解析卷浙江省奉化市中考数学真题分类(勾股定理)汇编章节练习试卷(含答案详解)_第2页
解析卷浙江省奉化市中考数学真题分类(勾股定理)汇编章节练习试卷(含答案详解)_第3页
解析卷浙江省奉化市中考数学真题分类(勾股定理)汇编章节练习试卷(含答案详解)_第4页
解析卷浙江省奉化市中考数学真题分类(勾股定理)汇编章节练习试卷(含答案详解)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省奉化市中考数学真题分类(勾股定理)汇编章节练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、我国古代数学名著《算法统宗》有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,5尺人高曾记,仕女家人争蹴.良工高士素好奇,算出索长有几?”此问题可理解为:“如图,有一架秋千,当它静止时,踏板离地距离的长为尺,将它向前水平推送尺时,即尺,秋千踏板离地的距离和身高尺的人一样高,秋千的绳索始终拉得很直,试问绳索有多长?”,设秋千的绳索长为尺,根据题意可列方程为(

)A. B.C. D.2、如图,正方形ABCD中,AB=12,将△ADE沿AE对折至△AEF,延长EF交BC于点G,G刚好是BC边的中点,则ED的长是()A.2 B.3 C.4 D.53、如图,正方形的边长为10,,,连接,则线段的长为(

)A. B. C. D.4、如图,长方形纸片ABCD中,AB=3cm,AD=9cm,将此长方形纸片折叠,使点D与点B重合,点C落在点H的位置,折痕为EF,则△ABE的面积为(

)A.6cm2 B.8cm2 C.10cm2 D.12cm25、如图,有一只小鸟从小树顶飞到大树顶上,它飞行的最短路程是()A.13米 B.12米 C.5米 D.米6、已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=07、“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为A.9 B.6 C.4 D.3第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、如图,在中,,,,现将沿进行翻折,使点刚好落在上,则__________.2、如图,点在正方形的边上,若,,那么正方形的面积为_.3、如图,已知,那么数轴上点所表示的数是________.4、在Rt△ABC中,∠C=90°,AC=9,AB=15,则点C到AB的距离是_______.5、如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是________________.6、如图,台阶A处的蚂蚁要爬到B处搬运食物,它爬的最短距离是_____.7、公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果小正方形面积是49,直角三角形中较小锐角θ的正切为,那么大正方形的面积是_____.8、如图,Rt△ABC中,∠C=90°,在△ABC外取点D,E,使AD=AB,AE=AC,且α+β=∠B,连结DE.若AB=4,AC=3,则DE=__.三、解答题(7小题,每小题10分,共计70分)1、如图,点是内一点,把绕点顺时针旋转得到,且,,.(1)判断的形状,并说明理由;(2)求的度数.2、如图,点是正方形内一点,将绕点顺时针旋转到的位置,若,求的度数.3、台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力,有一台风中心沿东西方向AB由点A行驶向点B,已知点C为一海港,且点C与直线AB上两点A、B的距离分别为300km和400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.(1)海港C会受台风影响吗?为什么?(2)若台风的速度为20km/h,台风影响该海港持续的时间有多长?4、如图所示,△ABC的两条高AD,BE相交于点F,AC=BC.(1)求证:△ADC≌△BEC.(2)若CD=1,BE=2,求线段AC的长.5、如图,高速公路上有A,B两点相距10km,C,D为两村庄,已知DA=4km,CB=6km,DA⊥AB于点A,CB⊥AB于B,现要在AB上建一个服务站E,使得C,D两村庄到E站的距离相等,求BE的长.6、一个25米长的梯子,斜靠在一竖直的墙上,这时的距离为24米,如果梯子的顶端A沿墙下滑4米,那么梯子底端B外移多少米?7、如图,AD是△ABC的中线,DE⊥AC于点E,DF是△ABD的中线,且CE=2,DE=4,AE=8.(1)求证:;(2)求DF的长.-参考答案-一、单选题1、C【解析】【分析】根据勾股定理列方程即可得出结论.【详解】解:由题意知:OC=x-(5-1),P'C=10,OP'=x,在Rt△OCP'中,由勾股定理得:[x-(5-1)]2+102=x2.即.故选:C.【考点】本题主要考查了勾股定理的应用,读懂题意是解题的关键.2、C【解析】【分析】连接AG,证明△ABG≌△AFG,得到FG=BG,△ADE沿AE对折至△AEF,则EF=DE,设DE=x,则EF=x,EC=12-x,则Rt△EGC中根据勾股定理列方程可求出DE的值.【详解】如图,连接AG,∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD=12.∵△ADE沿AE对折至△AEF,∴EF=DE,AF=AD,∵AF=AD,AB=AD,∴AF=AB,又AG是公共边,∴△ABG≌△AFG(HL),∵G刚好是BC边的中点,∴BG=FG=,设DE=x,则EF=x,EC=12-x,在Rt△EGC中,根据勾股定理列方程:62+(12-x)2=(x+6)2解得:x=4.所以ED的长是4,答案选C.【考点】本题考查了正方形和全等三角形的综合知识,根据勾股定理列方程是本题的解题关键.3、B【解析】【分析】延长DH交AG于点E,利用SSS证出△AGB≌△CHD,然后利用ASA证出△ADE≌△DCH,根据全等三角形的性质求出EG、HE和∠HEG,最后利用勾股定理即可求出HG.【详解】解:延长DH交AG于点E∵四边形ABCD为正方形∴AD=DC=BA=10,∠ADC=∠BAD=90°在△AGB和△CHD中∴△AGB≌△CHD∴∠BAG=∠DCH∵∠BAG+∠DAE=90°∴∠DCH+∠DAE=90°∴CH2+DH2=82+62=100=DC2∴△CHD为直角三角形,∠CHD=90°∴∠DCH+∠CDH=90°∴∠DAE=∠CDH,∵∠CDH+∠ADE=90°∴∠ADE=∠DCH在△ADE和△DCH中∴△ADE≌△DCH∴AE=DH=6,DE=CH=8,∠AED=∠DHC=90°∴EG=AG-AE=2,HE=DE-DH=2,∠GEH=180°-∠AED=90°在Rt△GEH中,GH=故选B.【考点】此题考查是正方形的性质、全等三角形的判定及性质和勾股定理,掌握正方形的性质、全等三角形的判定及性质和利用勾股定理解直角三角形是解决此题的关键.4、A【解析】【分析】根据折叠的条件可得:,在中,利用勾股定理就可以求解.【详解】将此长方形折叠,使点与点重合,,,根据勾股定理得:,解得:..故选:A.【考点】本题考查了利用勾股定理解直角三角形,掌握直角三角形两直角边的平方和等于斜边的平方是解题的关键.5、A【解析】【分析】根据题意,画出图形,构造直角三角形,用勾股定理求解即可.【详解】如图所示,过D点作DE⊥AB,垂足为E,∵AB=13,CD=8,又∵BE=CD,DE=BC,∴AE=AB−BE=AB−CD=13−8=5,∴在Rt△ADE中,DE=BC=12,∴∴AD=13(负值舍去),故小鸟飞行的最短路程为13m,故选A.【考点】考查勾股定理,画出示意图,数形结合是解题的关键.6、C【解析】【分析】如图,根据等腰三角形的性质和勾股定理可得m2+m2=(n-m)2,整理即可求解【详解】m2+m2=(n﹣m)2,2m2=n2﹣2mn+m2,m2+2mn﹣n2=0.故选C.7、D【解析】【分析】由题意可知:中间小正方形的边长为:,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【详解】解:由题意可知:中间小正方形的边长为:,每一个直角三角形的面积为:,,,或(舍去),故选:D.【考点】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.二、填空题1、【解析】【详解】解:设CD=x,则AD=A′D=4-x.在直角三角形ABC中,BC==5.则A′C=BC-AB=BC-A′B=5-3=2.在直角三角形A′DC中:AD2+AC2=CD2.即:(4-x)2+22=x2.解得:x=.故答案为:2.52、.【解析】【分析】根据勾股定理求出BC,根据正方形的面积公式计算即可.【详解】解:由勾股定理得,,正方形的面积,故答案为.【考点】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.3、【解析】【分析】首先根据勾股定理得:OB=.即OA=.又点A在数轴的负半轴上,则点A对应的数是-.【详解】解:由图可知,OC=2,作BC⊥OC,垂足为C,取BC=1,故,∵A在x的负半轴上,∴数轴上点A所表示的数是-.故答案为:-.【考点】此题主要考查了实数与数轴,勾股富士蝗应用,熟练运用勾股定理,同时注意根据点的位置以确定数的符号.4、【解析】【分析】首先根据勾股定理求出直角边BC的长,再根据三角形的面积为定值即可求出则点C到AB的距离【详解】在Rt△ABC中,∠C=90°,则有AC2+BC2=AB2∵AC=9,BC=12,∴AB=在Rt△ABC中,∠C=90°,则有AC2+BC2=AB2,∵AC=9,AB=15,∴BC==12,∵S△ABC=AC⋅BC=AB⋅h,∴h==故答案为【考点】本题考查了勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键5、1.5【解析】【分析】连接DF,由勾股定理求出AB=5,由等腰三角形的性质得出∠CAF=∠DAF,由SAS证明△ADF≌△ACF,得出CF=DF,∠ADF=∠ACF=∠BDF=90°,设CF=DF=x,则BF=4-x,在Rt△BDF中,由勾股定理得出方程,解方程即可.【详解】连接DF,如图所示:在Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理求得AB=5,∵AD=AC=3,AF⊥CD,∴∠CAF=∠DAF,BD=AB-AD=2,在△ADF和△ACF中,∴△ADF≌△ACF(SAS),∴∠ADF=∠ACF=90°,CF=DF,∴∠BDF=90°,设CF=DF=x,则BF=4-x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4-x)2,解得:x=1.5;∴CF=1.5;故答案为1.5.【考点】本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质,证明△ADF≌△ACF得到CF=DF,在Rt△BDF中利用勾股定理列方程是解决问题的关键.6、25【解析】【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【详解】解:如图所示:台阶平面展开图为长方形,根据题意得:,,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.由勾股定理得:,即,∴,故答案为:25.【考点】本题主要考查了平面展开图—最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.7、169.【解析】【分析】由题意知小正方形的边长为7.设直角三角形中较小边长为a,较长的边为b,运用正切函数定义求解.【详解】解:由题意知,小正方形的边长为7,设直角三角形中较小边长为a,较长的边为b,则tanθ=短边:长边=a:b=5:12.所以b=a,①又以为b=a+7,②联立①②,得a=5,b=12.所以大正方形的面积是:a2+b2=25+144=169.故答案是:169.【考点】本题主要考查了解直角三角形、勾股定理的证明和正方形的面积,掌握解直角三角形、勾股定理的证明和正方形的面积是解题的关键.8、5【解析】【分析】根据角度转换,得到三角形ADE是直角三角形,然后运用勾股定理计算出DE的长.【详解】∵∠B+∠C+∠BAC=180°,∠C=90°,∴∠B+∠BAC=90°.∵α+β=∠B,∴∠DAE=α+β+∠BAC==∠B+∠BAC=90°.∴△ADE是直角三角形.∴DE===5.【考点】本题主要考查到运用勾股定理求长度,说明三角形ADE是直角三角形是解题的关键.三、解答题1、(1)是直角三角形,理由见解析;(2)150°.【解析】【分析】(1)求出DE,CE,CD长,根据勾股逆定理可知的形状;(2)由等边三角形角的性质和全等三角形角的性质可知的度数【详解】解:(1)是直角三角形理由如下:绕点顺时针旋转得到,,,,是等边三角形,,又,,是直角三角形.(2)由(1)得,,是等边三角形,,,.【考点】本题是三角形综合题,主要考查了全等三角形的证明和性质、等边三角形的性质和判定、勾股逆定理,熟练应用等边三角形的性质求线段长及角度是解题的关键.2、【解析】【分析】连接EE`,如图,根据旋转的性质得BE=BE'=2,AE=CE'=1,∠EBE`=90°,则可判断△BEE`为等腰直角三角形,根据等腰直角三角形的性质得EE`=BE=2,∠BE`E=45°,在△CEE'中,由于CE`+EE'=CE,根据勾股定理的逆定理得到△CEE`为直角三角形,即∠EE`C=90°,然后利用∠BE'C=∠BE'E+∠CE'E求解【详解】连接EE`,如图,∵△ABE绕点B顺时针旋转90°得到△CBE`∴BE=BE'=2,AE=CE'=1,∠EBE'=90°∴△BEE'为等腰直角三角形∴EE'=BE=2,∠BE'E=45°在△CEE`中,CE=3,CE'=1,EE'=2,∵1+(2)=3∴CE+EE'=CE∴△CEE'为直角三角形∴∠EE'C=90°∴∠BE'C=∠BE'E+∠CE'E=135°【考点】此题考查了等腰直角三角形,勾股定理的逆定理,正方形的性质和旋转的性质,利用勾股定理证明三角形是直角三角形是解题关键3、(1)会,理由见解析;(2)7h【解析】【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,进而利用三角形面积得出CD的长,从而判断出海港C是否受台风影响;(2)利用勾股定理得出ED以及EF的长,进而得出台风影响该海港持续的时间.【详解】解:(1)如图所示,过点C作CD⊥AB于D点,∵AC=300km,BC=400km,AB=500km,∴,∴△ABC为直角三角形,∴,∴,∴,∵以台风中心为圆心周围250km以内为受影响区域,∴海港C会受到台风影响;(2)由(1)得CD=240km,如图所示,当EC=FC=250km时,即台风经过EF段时,正好影响到海港C,此时△ECF为等腰三角形,∵,∴EF=140km,∵台风的速度为20km/h,∴140÷20=7h,∴台风影响该海港持续的时间有7h.【考点】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.4、(1)见解析(2)【解析】【分析】(1)由AD⊥BC,BE⊥AC得∠BEC=∠ADC=90°,可证∠DAC=∠CBE,根据AAS可证△ADC≌△BEC;(2)由△ADC≌△BEC,得CD=CE=1,根据勾股定理可求.(1)证明:∵AD⊥BC,BE⊥AC,∴∠BEC=∠ADC=90°∴∠C+∠DAC=90°=∠C+∠CBE,∴∠DAC=∠CBE在△ADC和△BEC中,∴△ADC≌△BEC(AAS);(2)解:∵△ADC≌△BEC,∴CD=CE=1,∴BC===,∴AC=BC=【考点】本题考查了全等三角形的判定与性质,勾股定理,熟练掌握全等三角形的判定与性质是解题的关键.5、4km【解析】【分析】根据题意设出BE的长为xkm,再由勾股定理列出方程求解即可.【详解】解:设BE=xkm,则AE=(10﹣x)km,由勾股定理得:在Rt△AD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论