沪科版8年级下册期末测试卷附答案详解(典型题)_第1页
沪科版8年级下册期末测试卷附答案详解(典型题)_第2页
沪科版8年级下册期末测试卷附答案详解(典型题)_第3页
沪科版8年级下册期末测试卷附答案详解(典型题)_第4页
沪科版8年级下册期末测试卷附答案详解(典型题)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

沪科版8年级下册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、若是关于x的一元二次方程,则m的取值范围是()A.m>2 B.m≠0 C.m≤2 D.m≠22、下列新冠疫情防控标识图案中,中心对称图形是()A. B. C. D.3、下列条件中,不能判定四边形是平行四边形的是()A.两组对边分别相等 B.一组对边平行,另一组对边相等C.两组对角分别相等 D.一组对边平行且相等4、如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为()A. B. C. D.5、如图所示,四边形ABCD是平行四边形,点E在线段BC的延长线上,若∠DCE=128°,则∠A=()A.32° B.42° C.52° D.62°6、下列各式中,能与合并的是()A. B. C. D.7、方程的两个根为()A. B. C. D.8、如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它被第24届国际数学家大会选定为会徽,是国际数学界对我国古代数学伟大成就的肯定.“弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,若直角三角形的两条直角边分别为a、b,大正方形边长为3,小正方形边长为1,那么ab的值为()A.3 B.4 C.5 D.6第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,在中,,AB的垂直平分线交AB、AC于点D,E,若,,则的面积是______.2、计算________.3、若m是方程的一个根,则代数式的值等于_________.4、若是一元二次方程的一个根,则方程的另一个根是________.5、平行四边形ABCD中,∠BAD的平分线交BC边于点E,∠ADC的平分线交BC边于点F,AB=5,EF=1,则BC=______.6、写出一个最简二次根式a,使得,则a可以是______.7、如图,点A,B在直线的同侧,点A到的距离,点B到的距离,已知,P是直线上的一个动点,记的最小值为a,的最大值为b.(1)________;(2)________.三、解答题(6小题,每小题10分,共计60分)1、解方程:.2、因国际马拉松赛事即将在某市举行,某商场预计销售一种印有该市设计的马拉松图标的T恤,已知这种T恤的进价为40元一件.经市场调查,当售价为60元时,每天大约可卖出300件;售价每降低1元,每天可多卖出20件.在鼓励大量销售的前提下,商场还想获得每天6080元的利润,问应将这种T恤的销售单价定为多少元?3、解方程:(x2﹣9)+x(x﹣3)=0.4、已知一个正多边形一个内角等于一个外角的倍,求这个正多边形的边数.5、解下列方程:(1)(2)x2﹣6x﹣3=0(3)3x(x﹣1)=2(1﹣x)(4)2x2﹣5x+3=06、已知是方程的一个根,则______,另一个根为______.-参考答案-一、单选题1、D【详解】解:∵是关于x的一元二次方程,∴,∴.故选:D【点睛】本题主要考查了一元二次方程的定义,熟练掌握含有一个未知数,且未知数的最高次数为2的整式方程叫做一元二次方程是解题的关键.2、A【分析】一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:选项B、C、D不能找到这样的一个点,使图形绕某一点旋转180°后与原图重合,所以不是中心对称图形;选项A能找到这样的一个点,使图形绕某一点旋转180°后与原图重合,所以是中心对称图形;故选:A.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3、B【分析】直接利用平行四边形的判定定理判定,即可求得答案;注意掌握排除法在选择题中的应用.【详解】解:A、两组对边分别相等是平行四边形;故本选项不符合题意;B、一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形;故本选项符合题意.C、两组对角分别相等的四边形是平行四边形;故本选项不符合题意;D、一组对边平行且相等是平行四边形;故本选不符合题意;故选:B.【点睛】此题考查了平行四边形的判定.注意熟记平行四边形的判定定理是解此题的关键.4、C【分析】由于AE是折痕,可得到AB=AF,BE=EF,再求解设BE=x,在Rt△EFC中利用勾股定理列出方程,通过解方程可得答案.【详解】解:矩形ABCD,设BE=x,∵AE为折痕,∴AB=AF=1,BE=EF=x,∠AFE=∠B=90°,Rt△ABC中,∴Rt△EFC中,,EC=2-x,∴,解得:,则点E到点B的距离为:.故选:C.【点睛】本题考查了勾股定理和矩形与折叠问题;二次根式的乘法运算,利用对折得到,再利用勾股定理列方程是解本题的关键.5、C【分析】根据平行四边形的外角的度数求得其相邻的内角的度数,然后求得其对角的度数即可.【详解】解:∵∠DCE=128°,∴∠DCB=180°-∠DCE=180°-128°=52°,∵四边形ABCD是平行四边形,∴∠A=∠DCB=52°,故选:C.【点睛】本题主要考查了平行四边形的性质以及平角的定义,熟记平行四边形的各种性质是解题关键.平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形的对角线互相平分.6、D【分析】先将各个二次根式化成最简二次根式,再找出与是同类二次根式即可得.【详解】解:.A、,与不是同类二次根式,不可合并,此项不符题意;B、,与不是同类二次根式,不可合并,此项不符题意;C、,与不是同类二次根式,不可合并,此项不符题意;D、,与是同类二次根式,可以合并,此项符合题意;故选:D.【点睛】本题考查了二次根式的化简、同类二次根式,熟练掌握二次根式的化简是解题关键.7、D【分析】十字交叉相乘进行因式分解,各因式值为0,求解即可.【详解】解:,解得故选D.【点睛】本题考查了解一元二次方程.解题的关键在于正确的进行因式分解.8、B【分析】根据大正方形的面积是9,小正方形的面积是1,可得直角三角形的面积,即可求得ab的值.【详解】解:∵大正方形边长为3,小正方形边长为1,∴大正方形的面积是9,小正方形的面积是1,∴一个直角三角形的面积是(9-1)÷4=2,又∵一个直角三角形的面积是ab=2,∴ab=4.故选:B.【点睛】本题考查了与弦图有关的计算,还要注意图形的面积和a,b之间的关系.二、填空题1、【分析】根据勾股定理求出BC,根据线段垂直平分线的性质得到EA=EB,根据勾股定理列式计算得到答案.【详解】解:连接BE,∵DE是AB的垂直平分线,∴EA=EB,AD=DB=5,∵∠C=90°,AC=8,BD=5,∴AB=2BD=10,由勾股定理得,BC==6,则CE=8-AE=8-EB,在Rt△CBE中,BE2=CE2+BC2,即BE2=(8-BE)2+36,解得,BE=,则AE=,∴S△ABE=AE×BC=××6=,∴△ADE的面积是S△ABE=.故答案为:.【点睛】本题考查的是勾股定理以及线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.2、【分析】根据二次根式的除法,二次根式的性质化简,最后合并同类二次根式即可【详解】解:故答案为:【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解题关键.3、【分析】根据方程的解的定义,求得,再整体代入求解代数式的值即可.【详解】解:∵m是方程的一个根,∴即故答案为:【点睛】本题考查了一元二次方程的解的定义,整体代入是解题的关键.一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.4、7【分析】把代入方程中得到关于字母c的一元一次方程,解此方程解得c的值,再利用因式分解法解一元二次方程即可.【详解】解:把代入方程中得解得把代入原方程得故答案为:7.【点睛】本题考查方程的解,解一元一次方程、解一元二次方程等知识,是重要考点,难度较易,掌握相关知识是解题关键.5、11【分析】分两种情形分别计算,只要证明AB=BE,CD=CF,即可推出AB=BE=CF,由此即可解决问题.【详解】解:如图,∵AE平分∠BAD,DF平分∠ADC,∴∠BAE=∠EAD,∠ADF=∠CDF,∵四边形ABCD为平行四边形,∴AD∥BC,AB=CD,∴∠DAE=∠AEB,∠ADF=∠DFC,∴∠BAE=∠AEB,∠DFC=∠CDF,∴AB=BE,CD=CF,即2AB+EF=BC,∵AB=5,EF=1,∴BC=11.如图,由(1)可知:AB=BE,CD=CF,∵AB=CD=5,∴AB=BE=CF=5,∵BE+CF-EF=BC,EF=1,∴BC=2×5-1=9,综上:BC长为11或9,故答案为:11或9.【点睛】本题考查平行四边形的性质、角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.6、(答案不唯一)【分析】由题意根据最简二次根式的定义进行分析可得答案.【详解】解:由可得,所以a可以是.故答案为:(答案不唯一).【点睛】本题主要考查最简二次根式的定义(被开方数中不含能开得尽方的因数或因式;被开方数的因数是整数,因式是整式。那么,这个根式叫做最简二次根式),注意掌握并利用最简二次根式进行分析.7、【分析】作点A关于直线MN的对称点A,连接AB交直线MN于点P,过点A作直线AE⊥BD的延长线于点E,再根据勾股定理求出AB的长就是PA+PB的最小值;延长AB交MN于点P,此时PA−PB=AB,由三角形三边关系可知AB>|PA−PB|,故当点P运动到P点时|PA−PB|最大,作BE⊥AM,由勾股定理即可求出AB的长就是|PA−PB|的最大值.进一步代入求得答案即可.【详解】解:如图,作点A关于直线MN的对称点A,连接AB交直线MN于点P,则点P即为所求点.过点A作直线AE⊥BD的延长线于点E,则线段AB的长即为PA+PB的最小值.∵AC=8,BD=5,CD=4,∴AC=8,BE=8+5=13,AE=CD=4,∴AB=,即PA+PB的最小值是a=.如图,延长AB交MN于点P,∵PA−PB=AB,AB>|PA−PB|,∴当点P运动到P点时,|PA−PB|最大,∵BD=5,CD=4,AC=8,过点B作BE⊥AC,则BE=CD=4,AE=AC−BD=8−5=3,∴AB==5.∴|PA−PB|=5为最大,即b=5,∴a2−b2=185−25=160.故答案为:160.【点睛】本题考查的是最短线路问题及勾股定理,熟知两点之间线段最短及三角形的三边关系是解答此类问题的关键.三、解答题1、,【分析】利用求根公式解答即可.【详解】解:方程整理得:,这里,,,,,解得:,.【点睛】本题考查了解一元二次方程,解一元二次方程常用的方法有:直接开平方法、因式分解法、公式法及配方法,解题的关键是根据方程的特点选择简便的方法.2、应将这种T恤的销售单价定为56元/件.【分析】设应将这种T恤的销售单价定为x元/件,则每天大约可卖出[300+20(60-x)]件,根据总利润=每件的利润×日销售量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】解:设应将这种T恤的销售单价定为x元/件,则每天大约可卖出[300+20(60-x)]件,根据题意得:(x-40)[300+20(60-x)]=6080,整理得:x2-115x+3304=0,解得:x1=56,x2=59.∵鼓励大量销售,∴x=56.答:应将这种T恤的销售单价定为56元/件.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.3、.【分析】利用因式分解法解一元二次方程即可得.【详解】解:,,,即,或,或,故方程的解为.【点睛】本题考查了解一元二次方程,熟练掌握方程的解法(直接开平方法、因式分解法、公式法、配方法等)是解题关键.4、5【分析】多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,从而可根据一个正多边形的一个内角等于一个外角的列方程求解可得.【详解】解:设此正多边形为正n边形.∵正多边形的一个内角等于一个外角的,∴此正多边形的内角和等于其外角和的,∴×360°=(n-2)•180°,解得n=5.答:正多边形的边数为5.【点睛】本题考查正多边形的内角和与外角和.关键是记住内角和的公式与外角和的特征.5、(1),(2),(3),(4),【分析】(1)原方程运用因式分解法求解即可;(2)原方程运用配方法求解即可;(3)原方程移项后运用因式分解法求解即可;(4)原方程运用公式法求解即可.(1),∴,(2)x2﹣6x﹣3=0∴,(3)3x(x﹣1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论