江苏省靖江市中考数学真题分类(勾股定理)汇编章节测评试卷(含答案解析)_第1页
江苏省靖江市中考数学真题分类(勾股定理)汇编章节测评试卷(含答案解析)_第2页
江苏省靖江市中考数学真题分类(勾股定理)汇编章节测评试卷(含答案解析)_第3页
江苏省靖江市中考数学真题分类(勾股定理)汇编章节测评试卷(含答案解析)_第4页
江苏省靖江市中考数学真题分类(勾股定理)汇编章节测评试卷(含答案解析)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省靖江市中考数学真题分类(勾股定理)汇编章节测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、《九章算术》被尊为古代数学“群经之首”,其卷九勾股定理篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这个木材,锯口深等于1寸,锯道长1尺,则圆形木材的直径是(

)(1尺=10寸)A.12寸 B.13寸 C.24寸 D.26寸2、如图,所有阴影四边形都是正方形,所有三角形都是直角三角形,已知正方形A,B,C的面积依次为2,4,3,则正方形D的面积为()A.9 B.8 C.27 D.453、如图,在中,,两直角边,,现将AC沿AD折叠,使点C落在斜边AB上的点E处,则CD长为(

)A. B. C. D.4、在直角三角形中,若勾为3,股为4,则弦为()A.5 B.6 C.7 D.85、如图,中,,将折叠,使点C与的中点D重合,折痕交于点M,交于点N,则线段的长为(

).A. B. C.3 D.6、若a,b为直角三角形的两直角边,c为斜边,下列选项中不能用来证明勾股定理的是(

)A. B.C. D.7、我国古代数学名著《算法统宗》有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,5尺人高曾记,仕女家人争蹴.良工高士素好奇,算出索长有几?”此问题可理解为:“如图,有一架秋千,当它静止时,踏板离地距离的长为尺,将它向前水平推送尺时,即尺,秋千踏板离地的距离和身高尺的人一样高,秋千的绳索始终拉得很直,试问绳索有多长?”,设秋千的绳索长为尺,根据题意可列方程为(

)A. B.C. D.第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、如图,在中,,分别以,,边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当,时,阴影部分的面积为________.2、如图,在长方形ABCD中,AB=8,AD=10,点E为BC上一点,将△ABE沿AE折叠,点B恰好落在线段DE上的点F处,则BE的长为______.3、如图,铁路MN和公路PQ在O点处交汇,公路PQ上A处点距离O点240米,距离MN120米,如果火车行驶时,周围两百米以内会受到噪音的影响,那么火车在铁路MN上沿ON方向,以144千米/时的速度行驶时,A处受噪音影响的时间是_______s4、若△ABC中,cm,cm,高cm,则BC的长为________cm.5、如图,在中,,将线段绕点顺时针旋转至,过点作,垂足为,若,,则的长为__.6、如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了__米.7、如图,在的网格中每个小正方形的边长都为1,的顶点、、都在格点上,点为边的中点,则线段的长为________.8、把一根长12厘米的木棒,从一端起顺次截下3厘米和5厘米的两段,用得到的三根木棒首尾依次相接,摆成的三角形形状是______.三、解答题(7小题,每小题10分,共计70分)1、如图,某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后分别位于点Q,R处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?2、如图,烟台市正政府决定在相距50km的A、B两村之间的公路旁E点,修建一个大樱桃批发市场,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么大樱桃批发市场E应建什么位置才能符合要求?3、如图,小明家在一条东西走向的公路北侧米的点处,小红家位于小明家北米(米)、东米(米)点处.(1)求小明家离小红家的距离;(2)现要在公路上的点处建一个快递驿站,使最小,请确定点的位置,并求的最小值.4、(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(1876年4月1日发表在《新英格兰教育日志》上),现请你尝试证明过程.说明:.5、我们知道,到线段两端距离相等的点在线段的垂直平分线上.由此,我们可以引入如下新定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.(1)如图1,点P在线段BC上,∠ABP=∠APD=∠PCD=90°,BP=CD.求证:点P是△APD的准外心;(2)如图2,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,△ABC的准外心P在△ABC的直角边上,试求AP的长.6、阅读下面材料:小明遇到这样一个问题:∠MBN=30°,点A为射线BM上一点,且AB=4,点C为射线BN上动点,连接AC,以AC为边在AC右侧作等边三角形ACD,连接BD.当AC⊥BN时,求BD的长.小明发现:以AB为边在左侧作等边三角形ABE,连接CE,能得到一对全等的三角形,再利用∠EBC=90°,从而将问题解决(如图1).请回答:(1)在图1中,小明得到的全等三角形是△≌△;BD的长为.(2)动点C在射线BN上运动,当运动到AC时,求BD的长;(3)动点C在射线BN上运动,求△ABD周长最小值.7、小明爸爸给小明出了一道题:如图,修公路遇到一座山,于是要修一条隧道.已知A,B,C在同一条直线上,为了在小山的两侧B,C同时施工,过点B作一直线m(在山的旁边经过),过点C作一直线l与m相交于D点,经测量,,米,米.若施工队每天挖100米,求施工队几天能挖完?-参考答案-一、单选题1、D【解析】【分析】连接OA、OC,由垂径定理得AC=BC=AB=5寸,连接OA,设圆的半径为x寸,再在Rt△OAC中,由勾股定理列出方程,解方程可得半径,进而直径可求.【详解】解:连接OA、OC,如图:由题意得:C为AB的中点,则O、C、D三点共线,OC⊥AB,∴AC=BC=AB=5(寸),设圆的半径为x寸,则OC=(x﹣1)寸.在Rt△OAC中,由勾股定理得:52+(x﹣1)2=x2,解得:x=13.∴圆材直径为2×13=26(寸).故选:D【考点】本题主要考查了垂径定理的应用,勾股定理的应用,熟练掌握垂径定理,由勾股定理得出方程是解题的关键.2、A【解析】【分析】设正方形D的面积为x,根据图形得出方程2+4=x-3,求出即可.【详解】∵正方形A、B、C的面积依次为2、4、3,∴根据图形得:2+4=x−3.解得:x=9.故选A.【考点】本题考查了勾股定理,根据图形推出四个正方形的关系是解决问题的关键.3、A【解析】【分析】先根据勾股定理求得AB的长,再根据折叠的性质求得AE,BE的长,从而利用勾股定理可求得CD的长.【详解】解:∵AC=6cm,BC=8cm,∠C=90°,∴AB=(cm),由折叠的性质得:AE=AC=6cm,∠AED=∠C=90°,∴BE=10cm−6cm=4cm,∠BED=90°,设CD=x,则BD=BC−CD=8−x,在Rt△DEB中,BE2+DE2=BD2,即42+x2=(8−x)2,解得:x=3,∴CD=3cm,故选:A.【考点】本题考查了折叠的性质,勾股定理等知识;熟记折叠性质并表示出Rt△DEB的三边,然后利用勾股定理列出方程是解题的关键.4、A【解析】【分析】直接根据勾股定理求解即可.【详解】解:∵在直角三角形中,勾为3,股为4,∴弦为,故选A.【考点】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.5、D【解析】【分析】由折叠的性质可得DN=CN,根据勾股定理可求DN的长,即可得出结果.【详解】解:∵D是AB中点,AB=4,∴AD=BD=2,∵将△ABC折叠,使点C与AB的中点D重合,∴DN=CN,∴BN=BC-CN=6-DN,在Rt△DBN中,DN2=BN2+DB2,∴DN2=(6-DN)2+4,∴DN=,∴CN=DN=,故选:D.【考点】本题考查了翻折变换、折叠的性质、勾股定理,熟练运用折叠的性质是本题的关键.6、A【解析】【分析】由题意根据图形的面积得出的关系,即可证明勾股定理,分别分析即可得出答案【详解】解:A、不能利用图形面积证明勾股定理;B、根据面积得到;C、根据面积得到,整理得;D、根据面积得到,整理得.故选:A.【考点】本题考查勾股定理的证明,熟练掌握利用图形的面积得出的关系,即可证明勾股定理.7、C【解析】【分析】根据勾股定理列方程即可得出结论.【详解】解:由题意知:OC=x-(5-1),P'C=10,OP'=x,在Rt△OCP'中,由勾股定理得:[x-(5-1)]2+102=x2.即.故选:C.【考点】本题主要考查了勾股定理的应用,读懂题意是解题的关键.二、填空题1、24【解析】【分析】根据勾股定理得到AC2=AB2-BC2,先求解AC,再根据阴影部分的面积等于直角三角形的面积加上以AC,BC为直径的半圆面积,再减去以AB为直径的半圆面积即可.【详解】解:由勾股定理得,AC2=AB2-BC2=64,则阴影部分的面积,故答案为24.【考点】本题考查的是勾股定理、半圆面积计算,掌握勾股定理和半圆面积公式是解题的关键.2、【解析】【分析】设,则,由折叠的性质可知,,在中利用勾股定理表示出,在中,利用勾股定理列方程求解.【详解】解:设,则,由折叠的性质可知,,,.在中,,.在中,,即,解得.的长为.【考点】本题考查了勾股定理的应用,折叠的性质,熟练掌握勾股定理是解题的关键.3、8【解析】【分析】过点A作AC⊥ON,根据题意可知AC的长与200米相比较,发现受到影响,然后过点A作AD=AB=200米,求出BD的长即可得出居民楼受噪音影响的时间.【详解】解:如图:过点A作AC⊥ON,AB=AD=200米,∵公路PQ上A处点距离O点240米,距离MN120米,∴AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵144千米/小时=40米/秒,∴影响时间应是:320÷40=8秒.故答案为:8.【考点】本题考查勾股定理的应用.根据题意构建直角三角形是解题关键.4、28或8##8或28【解析】【分析】高的位置不确定,应分情况进行讨论:(1)高在内部;(2)高在外部,依此即可求解.【详解】解:如图(1)cm,cm,,则,,则;如图(2),由(1)得,,则.则的长为或.故答案为或.【考点】此题考查了勾股定理,本题需注意高的位置不确定,应根据三角形的形状分两种情况讨论.5、【解析】【分析】过作,为垂足,通过已知条件可以求得,,从而求得,再根据直角三角形的性质,即可求解.【详解】解:过作,为垂足,,又,,又,,在与中,,,,∴,在中,,设,则由勾股定理可得即解得故答案为.【考点】此题主要考查了三角形全等的证明方法和直角三角形的有关性质,利用已知条件合理构造直角三角形是解决本题的关键.6、9.【解析】【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长.【详解】在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵CD=10(米),∴AD==6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸边移动了9米,故答案为:9.【考点】本题考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.7、2.5【解析】【分析】由勾股定理得AC2=20,BC2=5,AB2=25,则AC2+BC2=AB2,再由勾股定理的逆定理证明△ABC是直角三角形,然后由直角三角形斜边上的中线性质即可得出答案.【详解】解:由勾股定理得:AC2=22+42=20,BC2=12+22=5,AB2=42+32=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°,AB=5,∵点O为AB边的中点,∴CO=AB=2.5,故答案为:2.5.【考点】本题考查了勾股定理、勾股定理的逆定理以及直角三角形斜边上的中线性质等知识,熟练掌握勾股定理和勾股定理的逆定理是解题的关键.8、直角三角形【解析】【分析】首先计算出第三条铁丝的长度,再利用勾股定理的逆定理可证明摆成的三角形是直角三角形.【详解】解:12-3-5=4(cm),∵32+42=52,∴这三条铁丝摆成的三角形是直角三角形,故答案为:直角三角形.【考点】此题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.三、解答题1、北偏西45°(或西北)【解析】【分析】直接得出RP=18海里,PQ=24海里,QR=30海里,利用勾股定理逆定理以及方向角即可得到“海

天”号航行方向.【详解】解:由题意可得:RP=18海里,PQ=24海里,QR=30海里,∵182+242=302,∴△RPQ是直角三角形,∴∠RPQ=90°,∵“远航”号沿东北方向航行,即沿北偏东45°方向航行,∴∠RPS=45°,∴“海天”号沿北偏西45°(或西北)方向航行.【考点】本题考查了勾股定理的应用,解题的重点主要是能够根据勾股定理的逆定理发现直角三角形,关键是从实际问题中抽象出直角三角形,难度不大.2、大樱桃批发市场E应建在离A站20千米的地方【解析】【分析】由勾股定理两直角边的平方和等于斜边的平方分别求出和,列等式求解即可.【详解】解:设大樱桃批发市场E应建在离A站x千米的地方,则千米.在直角中,根据勾股定理得:,∴,在直角中,根据勾股定理得:,∴.又∵C、D两村到E点的距离相等,∴,∴,所以,解得.∴大樱桃批发市场E应建在离A站20千米的地方.【考点】本题考查勾股定理的实际应用,掌握两直角边的平方和等于斜边的平方是解题的关键.3、(1)米;(2)见解析,米【解析】【分析】(1)如图,连接AB,根据勾股定理即可得到结论;(2)如图,作点A关于直线MN的对称点A',连接A'B交MN于点P.驿站到小明家和到小红家距离和的最小值即为A'B,根据勾股定理即可得到结论.【详解】解:(1)如图,连接AB,由题意知AC=500,BC=1200,∠ACB=90°,在Rt△ABC中,∵∠ACB=90°,∴AB2=AC2+BC2=5002+12002=1690000,∵AB>0∴AB=1300米;(2)如图,作点A关于直线MN的对称点A',连接A'B交MN于点P.驿站到小明家和到小红家距离和的最小值即为A'B,由题意知AD=200米,A'C⊥MN,∴A'C=AC+AD+A'D=500+200+200=900米,在Rt△A'BC中,∵∠ACB=90°,∴A'B2=A'C2+BC2=9002+12002=2250000,∵A'B>0,∴A'B=1500米,即从驿站到小明家和到小红家距离和的最小值为1500米.【考点】本题考查轴对称-最短问题,勾股定理,题的关键是学会利用轴对称解决最短问题.4、(1);(2)证明见解析.【解析】【分析】(1)根据正方形面积计算公式解答;(2)利用面积法证明即可得到结论.【详解】(1);(2)如图,∵Rt△DEC≌Rt△EAB,∴∠DEC=∠EAB,DE=AE,∵,∴,∴△AED为等腰直角三角形,∵,∴,即,∵,∴,∴.【考点】此题考查勾股定理的证明,完全平方公式在几何图形中的应用,正确理解各部分图形之间的关系,正确分析它们之间的面积等量关系是解题的关键.5、(1)见解析;(2)AP的长为或2或【解析】【分析】(1)利用AAS证明△ABP≌△PCD,得到AP=PD,由定义可知点P是△APD的准外心;(2)先利用勾股定理计算AC=4,再进行讨论:当P点在AB上,PA=PB,当P点在AC上,PA=PC,易得对应AP的值;当P点在AC上,PB=PC,设AP=t,则PC=PB=4﹣x,利用勾股定理得到32+t2=(4﹣t)2,然后解方程得到此时AP的长.【详解】(1)证明:∵∠ABP=∠APD=∠PCD=90°,∴∠APB+∠PAB=90°,∠APB+∠DPC=90°,∴∠PAB=∠DPC,在△ABP和△PCD中,,∴△ABP≌△PCD(AAS),∴AP=PD,∴点P是△APD的准外心;(2)解:∵∠BAC=90°,BC=5,AB=3,∴AC4,当P点在AB上,PA=PB,则APAB;当P点在AC上,PA=PC,则APAC=2,当P点在AC上,PB=PC,如图2,设AP=t,则PC=PB=4﹣x,在Rt△ABP中,32+t2=(4﹣t)2,解得t,即此时AP,综上所述,AP的长为或2或.【考点】本题考查了全等三角形的判定与性质,勾股定理及新定义的运用能力.理解题中给的定义是解题的关键.6、(1)ABD,ACE,;(2)BD的长为;(3)+4.【解析】【分析】(1)根据SAS可证△ABD≌△ACE,得出BD=CE,利用勾股定理求出CE即可得出BD的长度;(2)作AH⊥BC于点H,以AB为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论