




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大版9年级数学上册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题24分)一、单选题(6小题,每小题2分,共计12分)1、已知反比例函数的图象如图所示,将该曲线绕点O顺时针旋转得到曲线,点N是曲线上一点,点M在直线上,连接、,若,的面积为,则k的值为(
)A. B. C. D.2、如图,正方形纸板的一条对角线重直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,在灯光照射下,正方形纸板在地面上形成的影子的形状可以是(
)A. B. C. D.3、点P是△ABC中AB边上一点(不与A、B重合),过P作直线截△ABC使得截得的三角形与△ABC相似,这样的直线最多作()A.2条 B.3条 C.4条 D.5条4、如图1,矩形中,点为的中点,点沿从点运动到点,设,两点间的距离为,,图2是点运动时随变化的关系图象,则的长为(
)A. B. C. D.5、已知两个直角三角形的三边长分别为3,4,和6,8,,且这两个直角三角形不相似,则的值为(
)A.或 B.15 C. D.6、如图,直线与双曲线交于两点,则当线段的长度取最小值时,的值为(
)A. B. C. D.二、多选题(6小题,每小题2分,共计12分)1、如图,在△ABC中,∠BAC=90°,D是BC的中点,AE⊥AD交CB的延长线于点E.下列结论不正确的是(
)A.△AED∽△ACB B.△AEB∽△ACDC.△BAE∽△ACE D.△AEC∽△DAC2、已知直角三角形的两条边长恰好是方程的两个根,则此直角三角形斜边长是(
)A. B. C.3 D.53、下列四个说法中,不正确的是(
)A.一元二次方程有实数根B.一元二次方程有实数根C.一元二次方程有实数根D.一元二次方程x2+4x+5=a(a≥1)有实数根4、已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.下列说法正确的是(
)A.函数解析式为I= B.当R=9Ω时,I=4AC.蓄电池的电压是13V D.当I≤10A时,R≥3.6Ω5、下列各数不是方程解的是(
)A.6 B.2 C.4 D.06、已知反比例函数y=﹣,则下列结论错误的是()A.点(1,2)在它的图象上 B.其图象分别位于第一、三象限C.y随x的增大而增大 D.如果点P(m,n)在它的图象上,则点Q(n,m)也在它的图象上第Ⅱ卷(非选择题76分)三、填空题(8小题,每小题2分,共计16分)1、如图,已知在平面直角坐标系中,直线分别交轴,轴于点和点,分别交反比例函数,的图象于点和点,过点作轴于点,连结.若的面积与的面积相等,则的值是_____.2、如果关于x的方程有两个相等的正实数根,那么m的值为____________.3、如图,在中,,,,是斜边上方一点,连接,点是的中点,垂直平分,交于点,连接,交于点,当为直角三角形时,线段的长为________.4、如图,在一块长为22m,宽为14m的矩形空地内修建三条宽度相等的小路(阴影部分),其余部分种植花草.若花草的种植面积为240m2,则小路的宽为________m.5、如图,在△ABC中,∠A=30°,∠B=90°,D为AB中点,E在线段AC上,,则_____.6、如图,D是的边BC上一点,,,.如果的面积为15,那么的面积为______.7、关于的一元二次方程的一个根是2,则另一个根是__________.8、如图,边长为4的正方形的对称中心是坐标原点O,轴,轴,反比例函数与的图像均与正方形的边相交,则图中阴影部分的面积之和是________.四、解答题(6小题,每小题10分,共计60分)1、用适当的方法解下列方程:(1)
(2)2、如图,在矩形中,对角线与相交于点E,过点A作,过点B作,两线相交于点F.(1)求证:四边形是菱形;(2)连接,若,求证:.3、如图,在菱形ABCD中,AB=6,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.4、如图,四边形ABCD是正方形,点E在BC延长线上,DF⊥AE于点F,点G在AE上,且∠ABG=∠E.求证:AG=DF.5、如图,已知正方形点在边上,以为边在左侧作正方形;以为邻边作平行四边形连接.(1)判断和的数量及位置关系,并说明理由;(2)将绕点顺时针旋转,在旋转过程中,和的数量及位置关系是否发生变化?请说明理由.6、如图,在△ABC中,D,E分别是AC,AB上的点,∠ADE=∠B.△ABC的角平分线AF交DE于点G,交BC于点F.(1)求证:△ADG∽△ABF;(2)若,AF=6,求GF的长.-参考答案-一、单选题1、B【解析】【分析】将直线y=-x和曲线C2绕点O逆时针旋转45°,则直线y=-x与x轴重合,曲线C2与曲线C1重合,即可求解.【详解】解:∵将直线y=-x和曲线C2绕点O逆时针旋转45°,则直线y=-x与x轴重合,曲线C2与曲线C1重合,∴旋转后点N落在曲线C1上,点M落在x轴上,如图所示,设点M,N的对应点分别是M',N',过点N'作N'P⊥x轴于点P,连接ON',M'N'.∵MN=ON,∴M'N'=ON',M'P=PO,∴S△MON=S△M′ON′=2S△ON′P=2×=,∴(舍)或,故选B.【考点】本题考查了反比例函数系数k的几何意义,旋转的性质,体现了直观想象、逻辑推理的核心素养.2、D【解析】【分析】因为中心投影物体的高和影长成比例,正确的区分中心投影和平行投影,依次分析选项即可找到符合题意的选项【详解】因为正方形的对角线互相垂直,且一条对角线垂直地面,光源与对角线组成的平面垂直于地面,则有影子的对角线仍然互相垂直,且由于光源在平板的的上方,则上方的边长影子会更长一些,故选D【考点】本题考查了中心投影的概念,应用,利用中心投影的特点,理解中心投影物体的高和影长成比例是解题的关键.3、C【解析】【分析】根据相似三角形的判定方法分析,即可做出判断.【详解】满足条件的直线有4条,如图所示:如图1,过P作PE∥AC,则有△BPE∽△BAC;如图2,过P作PE∥BC,则有△APE∽△ABC;如图3,过P作∠AEP=∠B,又∠A=∠A,则有△APE∽△ACB;如图4,过P作∠BEP=∠A,又∠B=∠B,则有△BEP∽△BAC,故选:C.【考点】本题考查了相似三角形的判定,解答的关键是对相似三角形的判定方法的理解与灵活运用.4、C【解析】【分析】先利用图2得出当P点位于B点时和当P点位于E点时的情况,得到AB和BE之间的关系以及,再利用勾股定理求解即可得到BE的值,最后利用中点定义得到BC的值.【详解】解:由图2可知,当P点位于B点时,,即,当P点位于E点时,,即,则,∵,∴,即,∵∴,∵点为的中点,∴,故选:C.【考点】本题考查了学生对函数图象的理解与应用,涉及到了勾股定理、解一元二次方程、中点的定义等内容,解决本题的关键是能正确理解题意,能从图象中提取相关信息,能利用勾股定理建立方程等,本题蕴含了数形结合的思想方法.5、A【解析】【分析】判断未知边m、n是直角三角形的直角边还是斜边,再根据勾股定理计算出m、n的值,最后根据题目中两个三角形不相似,对应边的比值不同进行判断.【详解】解:在第一个直接三角形中,若m是直角边,则,若m是斜边,则;在第二个直接三角形中,若n是直角边,则,若n是斜边,则;又因为两个直角三角形不相似,故m=5和n=10,m=和n=不能同时取,即当m=5,,,当,n=10,,故选:A.【考点】本题主要考查了勾股定理以及相似三角形的性质,在直角三角形中对未知边是直角边还是斜边进行不同情况的讨论是解题的关键.6、C【解析】【分析】当直线经过原点时,线段AB的长度取最小值,依此可得关于的方程,解方程即可求得的值.【详解】∵根据反比例函数的对称性可知,要使线段AB的长度取最小值,则直线经过原点,∴,解得:.故选:C.【考点】考查了反比例函数与一次函数的交点问题,本题的关键是理解当直线经过原点时,线段AB的长度取最小值.二、多选题1、ABD【解析】【分析】先利用直角三角形斜边上的中线等于斜边的一半得到DA=DC,则∠DAC=∠C,再利用等角的余角相等得到∠EAB=∠DAC,从而有∠EAB=∠C,再加上公共角即可判断△BAE∽△ACE.【详解】解:∵∠BAC=90°,D是BC中点,∴DA=DC,∴∠DAC=∠C,又∵AE⊥AD,∴∠EAB+∠BAD=90°,∠CAD+∠BAD=90°,∴∠EAB=∠DAC,∴∠EAB=∠C,而∠E是公共角,∴△BAE∽△ACE∴C选项正确,ABD选项错误,故选ABD.【考点】此题主要考查学生对相似三角形判定定理的掌握和应用.2、AC【解析】【分析】先解出一元二次方程,再根据勾股定理计算即可;【详解】,,∴或,当2、3是直角边时,斜边;∵,∴3可以是三角形斜边;故选AC.【考点】本题主要考查了一元二次方程的求解、勾股定理,准确计算是解题的关键.3、ABC【解析】【分析】判断上述方程的根的情况,只要看根的判别式△的值的符号就可以了.【详解】解:、△,方程无实数根,错误,符合题意;、△,方程无实数根,错误,符合题意;、△,方程无实数根,错误,符合题意;、△,方程有实数根,正确,不符合题意;故选:ABC.【考点】本题考查了一元二次方程根的情况与判别式△的关系:解题的关键是掌握(1)△方程有两个不相等的实数根;(2)△方程有两个相等的实数根;(3)△方程没有实数根.4、BD【解析】【分析】设函数解析式为,将点(4,9)代入判断A错误;将R=9Ω代入判断B正确;由解析式判断C错误;由函数性质判断D正确.【详解】解:设函数解析式为,将点(4,9)代入,得,∴函数解析式为,故A错误;当R=9Ω时,I=4A,故B正确;蓄电池的电压是36V,故C错误;∵39>0,∴I随R的增大而减小,∴当I≤10A时,R≥3.6Ω,故D正确;故选:BD.【考点】此题考查了求反比例函数解析式,反比例函数的增减性,已知自变量求函数值的大小,正确掌握反比例函数的综合知识是解题的关键.5、ACD【解析】【分析】分别把四个选项中的数代入方程,看方程两边是否相等即可求解.【详解】解:A、将6代入得:,故6不是方程解,符合题意;B、将2代入得:,故2是方程解,不符合题意;C、将4代入得:,故4不是方程解,符合题意;D、将0代入得:,故0不是方程解,符合题意;故选:ACD.【考点】此题考查了一元二次方程解得含义,解题的关键是熟练掌握一元二次方程解得含义.6、ABC【解析】【分析】根据反比例函数图象上点的坐标特征、反比例函数的性质解答.【详解】A、将x=1代入y=-得到y=-2≠2,∴点(1,2)不在反比例函数y=-2x的图象上,故本选项错误;B、因为比例系数为-2,则函数图象过二、四象限,故本选项错误;C、在每一象限内y随x的增大而增大,故本选项错误.D、如果点P(m,n)在它的图象上,则点Q(n,m)也在它的图象上,故本选项正确;故选:ABC.【考点】本题考查了反比例函数的性质,熟悉反比例函数的图象是解题的关键.三、填空题1、2.【解析】【分析】过点作轴于.根据k的几何意义,结合三角形面积之间的关系,求出交点D的坐标,代入即可求得k的值.【详解】如图,过点作轴于.把y=0代入得:x=2,故OA=2由反比例函数比例系数的几何意义,可得,.∵,
∴,∴.易证,从而,即的横坐标为,而在直线上,∴∴.故答案为2【考点】本题是一次函数与反比例函数的交点问题,主要考查了一次函数和反比例函数的图象与性质,反比例函数“k“的几何意义,一次函数图象与反比例函数图象的交点问题,关键是根据两个三角形的面积相等列出k的方程.2、4【解析】【分析】根据一元二次方程根的判别式即可求得或,再根据方程有两个相等的正实数根,可知两根之和为正数,据此即可解答.【详解】解:关于x的方程有两个相等的实数根解得或又关于x的方程有两个相等的正实数根两根之和为正数,即,解得故故答案为:4【考点】本题考查了一元二次方程根的判别式及根与系数的关系,熟练掌握和运用一元二次方程根的判别式及根与系数的关系是解决本题的关键解.3、或【解析】【分析】(1)分别在、、中应用含角的直角三角形的性质以及勾股定理求得,,再根据垂直平分线的性质、等边三角形的判定和性质、等腰三角形的判定求得,最后利用线段的和差即可求得答案;根据垂直平分线的性质、全等三角形的判定和性质、分线段成比例定理可证得,然后根据平行线的性质、相似三角形的判定和性质列出方程,解方程即可求得,最后利用线段的和差即可求得答案.【详解】解:①当时,如图1:∵在中,,,∴∴∵,∴∵∴∴在中,设,则∵∴∴∴,∵垂直平分线段∴∵∴是等边三角形∴∴∴;②当时,连接、交于点,过点作于,如图2:设,则,∵垂直平分线段,点是的中点∴∵∴∵∵∴垂直平分线段∴∵,∴∴∵∴,∴∴∴∴∴∴∴.∴综上所述,满足条件的的值为6或.故答案是:6或【考点】本题考查了垂直平分线的性质和判定、含角的直角三角形的性质、勾股定理、全等三角形的判定和性质、平行线的判定和性质、相似三角形的判定和性质、等边三角形的判定和性质等,渗透了逻辑推理的核心素养以及分类讨论的数学思想.4、2【解析】【分析】设小路宽为xm,则种植花草部分的面积等同于长(22-x)m,宽(14-x)m的矩形的面积,根据花草的种植面积为240m2,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论.【详解】解:设小路宽为xm,则种植花草部分的面积等同于长(22-x)m,宽(14-x)m的矩形的面积,依题意得:(22-x)(14-x)=240,整理得:x2-36x+68=0,解得:x1=2,x2=34(不合题意,舍去).故答案为:2.【考点】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.5、或【解析】【分析】由题意可求出,取AC中点E1,连接DE1,则DE1是△ABC的中位线,满足,进而可求此时,然后在AC上取一点E2,使得DE1=DE2,则,证明△DE1E2是等边三角形,求出E1E2=,即可得到,问题得解.【详解】解:∵D为AB中点,∴,即,取AC中点E1,连接DE1,则DE1是△ABC的中位线,此时DE1∥BC,,∴,在AC上取一点E2,使得DE1=DE2,则,∵∠A=30°,∠B=90°,∴∠C=60°,BC=,∵DE1∥BC,∴∠DE1E2=60°,∴△DE1E2是等边三角形,∴DE1=DE2=E1E2=,∴E1E2=,∵,∴,即,综上,的值为:或,故答案为:或.【考点】本题考查了三角形中位线的性质,平行线分线段成比例,等边三角形的判定和性质以及含30°角的直角三角形的性质等,根据进行分情况求解是解题的关键.6、5【解析】【分析】先证明△ACD∽△BCA,再根据相似三角形的性质得到:△ACD的面积:△ABC的面积为1:4,再结合△ABD的面积为15,然后求出△ACD的面积即可.【详解】∵,,∴,∵,,∴,∴的面积,故答案是:5.【考点】本题主要考查了相似三角形的判定和性质、掌握相似三角形的面积比等于相似比的平方是解答本题的关键.7、-3【解析】【分析】由题意可把x=2代入一元二次方程进行求解a的值,然后再进行求解方程的另一个根.【详解】解:由题意把x=2代入一元二次方程得:,解得:,∴原方程为,解方程得:,∴方程的另一个根为-3;故答案为-3.【考点】本题主要考查一元二次方程的解及其解法,熟练掌握一元二次方程的解及其解法是解题的关键.8、8【解析】【分析】根据题意,观察图形可得图中的阴影部分的面积是图中正方形面积的一半,且AB∥x轴,BC∥y轴,而正方形面积为16,由此可以求出阴影部分的面积.【详解】解:根据题意:观察图形可得,图中以B、D为顶点的小阴影部分,绕点O顺时针旋转90°,正好和以A、C为顶点的小空白部分重合,所以阴影的面积是图中正方形面积的一半,且AB∥x轴,BC∥y轴,反比例函数与的图象均与正方形ABCD的边相交,而边长为4的正方形面积为16,所以图中的阴影部分的面积是8.故答案为:8.【考点】本题主要考查反比例函数图象和性质的应用,关键是要分析出其图象特点,再结合性质作答.四、解答题1、(1),;(2),【解析】【分析】(1)根据因式分解法求解一元二次方程的性质计算,通过计算即可得到答案;(2)根据公式法求解一元二次方程的性质计算,即可得到答案.【详解】(1)∵∴∴∴,;(2)∵∴∴,.【考点】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.2、(1)见解析;(2)见解析【解析】【分析】(1)先证明四边形是平行四边形,再由矩形的性质得出,即可得出四边形是菱形;(2)连接,由菱形的性质得出,证出和是等边三角形,推导出即可求解.【详解】证明:(1),,四边形是平行四边形,四边形是矩形,,,,,四边形是菱形;(2)连接,四边形是菱形,,,∠AFC=90°,,,是等边三角形,是等边三角形,,,又,是等边三角形,.【考点】本题考查了菱形的判定与性质、矩形的性质、等边三角形的判定与性质、平行四边形的判定;熟练掌握矩形的性质和菱形的判定与性质,证明四边形是菱形再进一步证出和是等边三角形是解决问题(2)的关键.3、(1)见解析(2)①3;②6【解析】【分析】(1)利用AAS证△NDE≌△MAE,得出NE=ME,进而得出结论;(2)①当四边形AMDN是矩形时∠AMD=90°,由菱形的性质得AD=6,进而求出AM的值;②当四边形AMDN是菱形时,AM=DM,由∠DAB=60°,得出△AMD为等边三角形,进而求出AM的值.(1)证明:∵四边形ABCD是菱形∴AB∥CD∴∠DNE=∠AME,∠NDE=∠MAE∵点E是AD边的中点∴AE=DE∴△NDE≌△MAE(AAS)∴NE=ME∴四边形AMDN是平行四边形(2)解:①当四边形AMDN是矩形时∠AMD=90°在菱形AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 急需资金购买房屋借款合同5篇
- 新解读《GB-T 30959-2014河西绒山羊》
- 范本代理记账合同范文2篇
- 解除租房合同范本
- 房屋倒塌租赁合同范本
- 退休聘用保洁合同范本
- 解除洗衣厂合同范本
- 护理个人年度计划书模板(5篇)
- 职高入团考试题目及答案
- 控烟工作心得体会怎么写(例文10篇)
- 临床基于ERAS理念下医护患一体化疼痛管理实践探索
- 2025年河北交警三力测试题及答案
- 2025贵州贵阳供销集团有限公司招聘笔试历年参考题库附带答案详解
- 人教版(2024)新教材三年级数学上册课件 1.2 观察物体(2)课件
- 颈椎骨折脊髓损伤的护理
- 华为海外税务管理办法
- 2025秋统编版小学道德与法治二年级上册教学设计(附目录)
- 2025年成人高考英语试题及答案
- 腱鞘炎个人护理
- 高渗盐水治疗脑水肿及颅内高压专家共识解读
- 《无人机地面站与任务规划》全套教学课件
评论
0/150
提交评论