解析卷北师大版9年级数学上册期末试卷及参考答案详解【培优A卷】_第1页
解析卷北师大版9年级数学上册期末试卷及参考答案详解【培优A卷】_第2页
解析卷北师大版9年级数学上册期末试卷及参考答案详解【培优A卷】_第3页
解析卷北师大版9年级数学上册期末试卷及参考答案详解【培优A卷】_第4页
解析卷北师大版9年级数学上册期末试卷及参考答案详解【培优A卷】_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北师大版9年级数学上册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题24分)一、单选题(6小题,每小题2分,共计12分)1、为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下.身高人数60260550130根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于的概率是(

)A.0.32 B.0.55 C.0.68 D.0.872、如图,菱形ABCD的两条对角线长分别为AC=6,BD=8,点P是BC边上的一动点,则AP的最小值为(

)A.4 B.4.8 C.5 D.5.53、反比例函数图象的两个分支分别位于第一、三象限,则一次函数的图象大致是(

)A. B.C. D.4、如图,平行四边形ABCD的对角线AC,BD相交于点O,添加下列条件仍不能判断四边形ABCD是矩形的是(

)A.AB+BC=AC B.AB=AD C.OA=OD D.∠ABC+∠ADC=180°5、一元二次方程配方后可化为(

)A. B.C. D.6、如图,菱形ABCD中,∠ABC=60°,AB=4,E是边AD上一动点,将△CDE沿CE折叠,得到△CFE,则△BCF面积的最大值是(

)A.8 B. C.16 D.二、多选题(6小题,每小题2分,共计12分)1、下列说法中,正确的是(

)A.两角对应相等的两个三角形相似B.两边对应成比例的两个三角形相似C.两边对应成比例且夹角相等的两个三角形相似D.三边对应成比例的两个三角形相似2、已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.下列说法正确的是(

)A.函数解析式为I= B.当R=9Ω时,I=4AC.蓄电池的电压是13V D.当I≤10A时,R≥3.6Ω3、设点和B(,)是反比例函数图象上的两个点,当<<0时,<,则一次函数的图象经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4、下列方程中,是一元二次方程的是(

)A. B. C. D.5、F,且CE:AC=1:则下列结论正确的有(

)A.△CBE≌△CDEB.DE=FEC.AE=BED.S△BEF=S四边形ABCD2.具备下列各组条件的两个三角形中,一定相似的是(

)A.有一个角是40°的两个等腰三角形 B.两个等腰直角三角形C.有一个角为100°的两个等腰三角形 D.两个等边三角形6、如图,在边长为4的正方形ABCD中,点E,F分别是边BC,AB的中点,连接AE,DF交于点N,将△ABE沿AE翻折,得到△AGE,AG交DF于点M,延长EG交AD的延长线于点H,连接CG,ME,取ME的中点为点O,连接NO,GO.则以下结论正确的有(

)A. B.C.△GEC为等边三角形 D.第Ⅱ卷(非选择题76分)三、填空题(8小题,每小题2分,共计16分)1、某批青稞种子在相同条件下发芽试验结果如下表:每次试验粒数501003004006001000发芽频数4796284380571948估计这批青稞发芽的概率是___________.(结果保留到0.01)2、如图,四边形ABCD是一个正方形,E是BC延长线上一点,且AC=EC,则∠DAE的度数为_________.3、如图,△ABC与△是位似图形,点是位似中心,若,,则=________.4、如果关于的一元二次方程的一个解是,那么代数式的值是___________.5、如图,正方形ABCO的边长为,OA与x轴正半轴的夹角为15°,点B在第一象限,点D在x轴的负半轴上,且满足∠BDO=15°,直线y=kx+b经过B、D两点,则b﹣k=_____.6、如图,已知在平面直角坐标系中,直线分别交轴,轴于点和点,分别交反比例函数,的图象于点和点,过点作轴于点,连结.若的面积与的面积相等,则的值是_____.7、如图,点D,E分别在△ABC的边AC,AB上,△ADE∽△ABC,M,N分别是DE,BC的中点,若=,则=__.8、如图,在矩形纸片ABCD中,AB=12,AD=5,P为DC边上的动点(点P不与点D,C重合),将纸片沿AP折叠(1)当四边形ADPD′是正方形时,CD′的长为___.(2)当CD′的长最小时,PC的长为___.四、解答题(6小题,每小题10分,共计60分)1、在等边三角形中,,D为的中点.连接,E,F分别为,的中点,将绕点C逆时针旋转,记旋转角为,直线和直线交于点G.(1)如图1,线段和线段的数量关系是________________,直线与直线相交所成的较小角的度数是________________.(2)将图1中的绕点C逆时针旋转到图2所示位置时,判断(1)中的结论是否仍然成立?若成立,请仅就图2的情形给出证明;若不成立,请说明理由.(3)在(2)的条件下,当以点C,F,E,G为顶点的四边形是矩形时,请直接写出的长.2、如图,∠1=∠2=∠3,试找出图中两对相似三角形,并说明为什么?3、已知关于x的一元二次方程有两个实数根.(1)求k的取值范围;(2)若,求k的值.4、解关于y的方程:by2﹣1=y2+2.5、解一元二次方程(1)(2)6、陕西某景区吸引了大量中外游客前来参观,如果游客过多,对进景区的游客健康检查、拥堵等问题会产生不利影响,但也要保证一定的门票收入,因此景区采取了涨浮门票价格的方法来控制旅游人数,在该方法实施过程中发现:每周旅游人数与票价之间存在着如图所示的一次函数关系.在这种情况下,如果要保证每周3000万元的门票收入,那么每周应限定旅游人数是多少万人?门票价格应是多少元?-参考答案-一、单选题1、C【解析】【分析】先计算出样本中身高不低于170cm的频率,然后根据利用频率估计概率求解.【详解】解:样本中身高不低于170cm的频率,所以估计抽查该地区一名九年级男生的身高不低于170cm的概率是0.68.故选:C.【考点】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.2、B【解析】【分析】由垂线段最短,可得AP⊥BC时,AP有最小值,由菱形的性质和勾股定理可求BC的长,由菱形的面积公式可求解.【详解】如图,设AC与BD的交点为O,∵点P是BC边上的一动点,∴AP⊥BC时,AP有最小值,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=AC=3,BO=DO=BD=4,∴BC=,∵S菱形ABCD=×AC×BD=BC×AP,∴AP==4.8,故选:B.【考点】本题考查了菱形的性质,勾股定理,确定当AP⊥BC时,AP有最小值是本题关键.3、D【解析】【分析】根据题意可得,进而根据一次函数图像的性质可得的图象的大致情况.【详解】反比例函数图象的两个分支分别位于第一、三象限,∴一次函数的图象与y轴交于负半轴,且经过第一、三、四象限.观察选项只有D选项符合.故选D【考点】本题考查了反比例函数的性质,一次函数图像的性质,根据已知求得是解题的关键.4、B【解析】【分析】由勾股定理的逆定理证得∠ABC=90°,根据有一个角是直角的平行四边形是矩形可判断A;根据有一组邻边相等的平行四边形是菱形可判断B;根据对角线相等的平行四边形是矩形可判断C;根据有一个角是直角的平行四边形是矩形可判断D.【详解】解:A.∵AB2+BC2=AC2,∴∠ABC=90°,∴▱ABCD为矩形,故本选项不符合题意;B.∵AB=AD,∴▱ABCD为菱形,故本选项符合题意;C.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴▱ABCD是矩形,故本选项不符合题意;D.∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴▱ABCD为矩形,故本选项不符合题意;故选:B.【考点】本题考查了矩形的判定定理,勾股定理的逆定理,平行四边形的性质,熟练掌握矩形的判定方法是解决问题的关键.5、B【解析】【分析】根据题意直接对一元二次方程配方,然后把常数项移到等号右边即可.【详解】解:根据题意,把一元二次方程配方得:,即,∴化成的形式为.故选:B.【考点】本题考查配方法解一元二次方程,注意掌握配方法的一般步骤:把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.6、A【解析】【分析】由三角形底边BC是定长,所以当△BCF的高最大时,△BCF的面积最大,即当FC⊥BC时,三角形有最大面积.【详解】解:在菱形ABCD中,BC=CD=AB=4又∵将△CDE沿CE折叠,得到△CFE,∴FC=CD=4由此,△BCF的底边BC是定长,所以当△BCF的高最大时,△BCF的面积最大,即当FC⊥BC时,三角形有最大面积∴△BCF面积的最大值是故选:A.【考点】本题考查菱形的性质和折叠的性质,掌握三角形面积的计算方法和菱形的性质正确推理计算是解题关键.二、多选题1、ACD【解析】【分析】根据相似三角形的判定定理判断即可.【详解】A

“两角对应相等的两个三角形相似”是正确的;B

“两边对应成比例的两个三角形相似”是错误的,还需添上条件“且夹角相等”才成立;C

“两边对应成比例且夹角相等的两个三角形相似”是正确的;D

“三边对应成比例的两个三角形相似”是正确的故选:ACD【考点】本题考查了相似三角形的判定定理,做题的关键是熟练掌握相似三角形的判定定理.2、BD【解析】【分析】设函数解析式为,将点(4,9)代入判断A错误;将R=9Ω代入判断B正确;由解析式判断C错误;由函数性质判断D正确.【详解】解:设函数解析式为,将点(4,9)代入,得,∴函数解析式为,故A错误;当R=9Ω时,I=4A,故B正确;蓄电池的电压是36V,故C错误;∵39>0,∴I随R的增大而减小,∴当I≤10A时,R≥3.6Ω,故D正确;故选:BD.【考点】此题考查了求反比例函数解析式,反比例函数的增减性,已知自变量求函数值的大小,正确掌握反比例函数的综合知识是解题的关键.3、BCD【解析】【分析】根据反比例函数图象的性质得出k的取值范围,进而根据一次函数的性质得出一次函数y=−2x+k的图象不经过的象限.【详解】解:∵点和B(,)是反比例函数图象上的两个点,当<<0时,<,∴<<0时,y随x的增大而增大,∴k<0,∴一次函数y=−2x+k的图象不经过第一象限.故答案为:BCD.【考点】此题主要考查了一次函数图象与系数的关系以及反比例函数的性质,根据反比例函数的性质得出k的取值范围是解题关键.4、ABC【解析】【分析】根据一元二次方程的定义逐个判断即可.【详解】解:A、是一元二次方程,故本选项符合题意;B、是一元二次方程,故本选项符合题意;C、是一元二次方程,故本选项符合题意;D、方程,整理得:,是一元一次方程,不是一元二次方程,故本选项不符合题意;故选:【考点】本题考查了一元二次方程的定义,能熟记一元二次方程的定义的内容是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的次数最高是2的整式.5、BCD【解析】【分析】根据相似三角形的判定方法一一判断即可.【详解】A.有一个角是40°的两个等腰三角形,当40°的角为等腰三角形的底角,当40°的角为等腰三角形顶角,两个三角形内角分别为40°、40°、100°和40°、70°、70°,则两三角形不相似,故选项A不合题意B.等腰直角三角形的内角均为45°,45°,90°,根据三角形相似判定方法等腰直角三角形有两组角对应相等,两个三角形相似,一定相似,故选项B符合题意;C.∵100°>90°,∴100°的角只能是等腰三角形的顶角,另两个角分别为40°,40°,根据三角形相似判定定理,有两组角对应相等的三角形相似,故选项C符合题意;D.∵等边三角形的内角都是60°,根据三角形相似判定定理,两个等边三角形有两个角对应相等,两个三角形相似,故选项D符合题意.故选:BCD.【考点】考查相似三角形的判定方法,掌握相似三角形判定的4种方法是解题的关键.6、ABD【解析】【分析】由正方形的性质可得,则易证,然后可判定A选项,由折叠的性质及平行线的性质可得B选项,由题意易得,进而根据三角形中线及等积法可判定D选项.【详解】解:∵四边形ABCD是正方形,∴,AD∥BC,∴,∵点E,F分别是边BC,AB的中点,∴,∴(SAS),∴,∵,∴,∴,由折叠性质可得,∴,∴,假设△GEC为等边三角形成立,则有,∴,∴,∴,∴与AB=2BE相矛盾,故假设不成立;由折叠的性质可知,∴,∴,∵ME的中点为点O,∴,∴;综上所述:正确的有ABD;故选ABD.【考点】本题主要考查全等三角形的性质与判定、正方形的性质、折叠性质及等积法,熟练掌握全等三角形的性质与判定、正方形的性质、折叠性质及等积法是解题的关键.三、填空题1、0.95【解析】【分析】利用大量重复试验下事件发生的频率可以估计该事件发生的概率直接回答即可.【详解】观察表格得到这批青稞发芽的频率稳定在0.95附近,则这批青稞发芽的概率的估计值是0.95,故答案为:0.95.【考点】此题考查了利用频率估计概率,从表格中的数据确定出这种油菜籽发芽的频率是解本题的关键.2、22.5°【解析】【分析】由四边形ABCD是一个正方形,根据正方形的性质,可得∠ACB=45°,又由AC=EC,根据等边对等角,可得∠E=∠CAE,继而根据等腰三角形的性质和三角形的内角和求得∠EAC的度数,进一步即可求得∠DAE的度数.【详解】解:∵四边形是正方形,∴,∴,又∵,∴,则.故答案为:22.5°【考点】此题考查了正方形的性质以及等腰三角形的性质.此题比较简单,注意掌握数形结合思想的应用.3、16【解析】【分析】题干已知△ABC与△是位似图形,利用面积相似比进行分析求解.【详解】解:△ABC与△是位似图形,得到,利用相似图形,面积比即是对应线段比的平方比得到,由,得到=16.【考点】本题考查位似图形,利用相似图形的面积比即是对应线段比的平方比,从而分析求解.4、【解析】【分析】根据关于的一元二次方程的一个解是,可以得到的值,然后将所求式子变形,再将的值代入,即可解答本题.【详解】解:关于的一元二次方程的一个解是,,,.故答案为:2020.【考点】本题考查一元二次方程的解,解答本题的关键是明确一元二次方程的解的含义.5、2﹣.【解析】【分析】连接OB,过点B作BE⊥x轴于点E,根据正方形的性质可得出∠AOB的度数及OB的长,结合三角形外角的性质可得出∠BDO=∠DBO,利用等角对等边可得出OD=OB,进而可得出点D的坐标,在Rt△BOE中,通过解直角三角形可得出点B的坐标,由点B,D的坐标,利用待定系数法可求出k,b的值,再将其代入(b﹣k)中即可求出结论.【详解】解:连接OB,过点B作BE⊥x轴于点E,如图所示.∵正方形ABCO的边长为,∴∠AOB=45°,OB=OA=2.∵OA与x轴正半轴的夹角为15°,∴∠BOE=45°﹣15°=30°.又∵∠BDO=15°,∴∠DBO=∠BOE﹣∠BDO=15°,∴∠BDO=∠DBO,∴OD=OB=2,∴点D的坐标为(﹣2,0).在Rt△BOE中,OB=2,∠BOE=30°,∴BE=OB=1,OE==,∴点B的坐标为(,1).将B(,1),D(﹣2,0)代入y=kx+b,得:,解得:,∴b﹣k=4﹣2﹣(2﹣)=2﹣.故答案为:2﹣.【考点】此题考查的是正方形的性质、等腰三角形的判定、直角三角形的性质和求一次函数的解析式,掌握正方形的性质、等角对等边、30°所对的直角边是斜边的一半、勾股定理和利用待定系数法求一次函数解析式是解决此题的关键.6、2.【解析】【分析】过点作轴于.根据k的几何意义,结合三角形面积之间的关系,求出交点D的坐标,代入即可求得k的值.【详解】如图,过点作轴于.把y=0代入得:x=2,故OA=2由反比例函数比例系数的几何意义,可得,.∵,

∴,∴.易证,从而,即的横坐标为,而在直线上,∴∴.故答案为2【考点】本题是一次函数与反比例函数的交点问题,主要考查了一次函数和反比例函数的图象与性质,反比例函数“k“的几何意义,一次函数图象与反比例函数图象的交点问题,关键是根据两个三角形的面积相等列出k的方程.7、【解析】【分析】根据相似三角形对应中线的比等于相似比求出,根据相似三角形面积的比等于相似比的平方解答即可.【详解】解:∵M,N分别是DE,BC的中点,∴AM、AN分别为△ADE、△ABC的中线,∵△ADE∽△ABC,∴==,∴=()2=,故答案为:.【考点】本题考查了相似三角形的性质,掌握相似三角形面积的比等于相似比的平方、相似三角形对应中线的比等于相似比是解题的关键.8、

【解析】【分析】(1)根据四边形是正方形,得到从而得到再利用勾股定理求解即可得到答案;(2)如图:连接,运用矩形的性质和折叠的性质求出的最小值,再设,则,最后在中运用勾股定理解答即可【详解】解:(1)如图所示,∵四边形是正方形∴∵∴∵四边形ABCD是矩形∴,∠B=90°∴(2)如图:连接,当点在上时,有最小值.∵四边形是矩形,,,∴,,∴.由折叠性质,得,,∴的最小值.设,则.在中,,即,解得,∴的长为.故答案为:.【考点】本题主要考查矩形的性质和折叠的性质,正方形的性质,勾股定理,根据矩形的性质和折叠的性质确定的最小值成为解答本题的关键.四、解答题1、(1),;(2)结论仍然成立;证明见解析;(3)或.【解析】【分析】(1)先根据等边三角形的性质可得,再根据含角的直角三角形的性质以及三角形中位线定理求解即可;(2)由(1)的结论以及旋转的性质证明,根据相似三角形的性质即解答即可;(3)当以点C、F、E、G为顶点的四边形是矩形时,分两种情况讨论,根据矩形的性质以及勾股定理求解即可.【详解】解:(1)∵是等边三角形,D为的中点.∴,∵E,F分别为,的中点,∴,∴,∴,∴,由图1得:直线与直线相交所成的较小角的度数是,故填:,;(2)(1)中的结论仍然成立.证明:设交于点H,∵是等边三角形,D为的中点.∴,∵E,F分别为,的中点,∴,∴,∴,∵绕点C逆时针旋转,∴,∴,∴,∵,∴,∴,∵,∴,∴;(3)分两种情况:①当点E在线段上时,∵四边形是矩形,∴,∵,∴,由(2)知:,∴,在中,,∴,∴;②当点E在线段的延长线上时,同①,,∴;综上,的长为或.【考点】本题属于四边形综合题,主要考查了矩形的性质、等边三角形的性、旋转的性质、相似三角形的判定和性质等知识,正确运用相似三角形的判定和性质以及分类讨论的思想的灵活运用成为解答本题的关键.2、(2)由(1)同理可得(5﹣x)2x=整理,得x2﹣5x+7=0,因为b2﹣4ac=25﹣28<0,所以,此方程无解.所以△PBQ的面积不可能等于7cm2.【考点】本题主要考查一元二次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解,判断某个三角形的面积是否等于一个值,只需根据题意列出方程,判断该方程是否有解,若有解则存在,否则不存在.7.△AFD∽△EFB,△ABC∽△ADE;理由见解析.【解析】【分析】根据两个三角形的两组角对应相等,那么这两个三角形互为相似三角形证明即可.【详解】解:△AFD∽△EFB,△ABC∽△ADE.理由如下:∵∠2=∠3,∠AFD=∠EFB∴△AFD∽△EFB,∴∠B=∠D.∵∠1=∠2,∴,∴∠BAC=∠DAE,∴△ABC∽△ADE.【考点】本题考查相似三角形的判定定理,熟记判定定理,本题用到了两组角对应相等的两个三角形互为相似三角形.3、(1);(2)【解析】【分析】(1)根据建立不等式即可求解;(2)先提取公因式对等式变形为,再结合韦达定理求解即可.【详解】解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论