版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
沪科版9年级下册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如图,DC是⊙O的直径,弦AB⊥CD于M,则下列结论不一定成立的是()A.AM=BM B.CM=DM C. D.2、下列图形中,既是中心对称图形又是抽对称图形的是()A. B. C. D.3、下列图形中,可以看作是中心对称图形的是()A. B.C. D.4、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为()A.105° B.120° C.135° D.150°5、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到△EDC,斜边DE交AC边于点F,则图中阴影部分的面积为()A.3 B.1 C. D.6、已知菱形ABCD的对角线交于原点O,点A的坐标为,点B的坐标为,则点D的坐标是()A. B. C. D.7、下列图形中,既是中心对称图形也是轴对称图形的是()A. B. C. D.8、已知⊙O的半径为4,,则点A在()A.⊙O内 B.⊙O上 C.⊙O外 D.无法确定第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、有四张完全相同的卡片,正面分别标有数字,,,,将四张卡片背面朝上,任抽一张卡片,卡片上的数字记为,再从剩下卡片中抽一张,卡片上的数字记为,则二次函数的对称轴在轴左侧的概率是__________.2、若扇形的圆心角为60°,半径为2,则该扇形的弧长是_____(结果保留)3、在菱形ABCD中,AB=6,E为AB的中点,连结AC,DE交于点F,连结BF.记∠ABC=α(0°<α<180°).(1)当α=60°时,则AF的长是_____;(2)当α在变化过程中,BF的取值范围是_____.4、已知一个扇形的半径是1,圆心角是120°,则这个扇形的面积是___________.5、已知中,,,,以为圆心,长度为半径画圆,则直线与的位置关系是__________.6、如图,已知,外心为,,,分别以,为腰向形外作等腰直角三角形与,连接,交于点,则的最小值是______.7、如图,在⊙O中,∠BOC=80°,则∠A=___________°.三、解答题(7小题,每小题0分,共计0分)1、元元同学在数学课上遇到这样一个问题:如图1,在平面直角坐标系xOy中,OA经过坐标原点O,并与两坐标轴分别交于B、C两点,点B的坐标为,点D在上,且,求OA的半径和圆心A的坐标.元元的做法如下,请你帮忙补全解题过程:解:如图2,连接BC.作AELOB于E、AF⊥OC于F.∴、(依据是①)∵,∴(依据是②).∵,.∴BC是的直径(依据是③).∴∵,∴A的坐标为(④)的半径为⑤2、如图,四边形ABCD内接于⊙O,AC是直径,点C是劣弧BD的中点.(1)求证:.(2)若,,求BD.3、正方形绿化场地拟种植两种不同颜色(用阴影部分和非阴影部分表示)的花卉,要求种植的花卉能组成轴对称或中心对称图案,下面是三种不同设计方案中的一部分.(1)请把图①、图②补成既是轴对称图形,又是中心对称图形,并画出一条对称轴;(2)把图③补成只是中心对称图形,并把中心标上字母P.4、如图,已知AB是⊙O的直径,,连接OC,弦,直线CD交BA的延长线于点.(1)求证:直线CD是⊙O的切线;(2)若,,求OC的长.5、随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.(1)王老师被分配到“就餐监督岗”的概率为;(2)用列表法或画树状图法,求李老师和王老师被分配到同一个监督岗的概率.6、对于平面直角坐标系xOy中的图形M,N,给出如下定义:若图形M和图形N有且只有一个公共点P,则称点P是图形M和图形N的“关联点”.已知点,,,.(1)直线l经过点A,的半径为2,在点A,C,D中,直线l和的“关联点”是______;(2)G为线段OA中点,Q为线段DG上一点(不与点D,G重合),若和有“关联点”,求半径r的取值范围;(3)的圆心为点,半径为t,直线m过点A且不与x轴重合.若和直线m的“关联点”在直线上,请直接写出b的取值范围.7、如图,是由若干个完全相同的小正方体组成的一个几何体.(1)请画出这个几何体的从左面看和从上面看的形状图;(用阴影表示)(2)已知每个小正方体的边长是2cm,求出这个几何体的表面积是多少?-参考答案-一、单选题1、B【分析】根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.【详解】解:∵弦AB⊥CD,CD过圆心O,∴AM=BM,,,即选项A、C、D选项说法正确,不符合题意,当根据已知条件得CM和DM不一定相等,故选B.【点睛】本题考查了垂径定理,解题的关键是掌握垂径定理.2、B【详解】解:.是轴对称图形,不是中心对称图形,故此选项不符合题意;.既是轴对称图形,也是中心对称图形,故此选项符合题意;.是轴对称图形,不是中心对称图形,故此选项不符合题意;.不是轴对称图形,是中心对称图形,故此选项不符合题意;故选:B.【点睛】本题主要考查了中心对称图形和轴对称图形的概念,解题的关键是判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.3、C【分析】根据中心对称图形的定义进行逐一判断即可.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C.【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.4、B【分析】由题意易得,然后根据三角形外角的性质可求解.【详解】解:由旋转的性质可得:,∴;故选B.【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.5、D【分析】根据题意及旋转的性质可得是等边三角形,则,,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积.【详解】解:如图,设与相交于点,,,,旋转,,是等边三角形,,,,,,,,阴影部分的面积为故选D【点睛】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键.6、A【分析】根据菱形是中心对称图形,菱形ABCD的对角线交于原点O,则点与点关于原点中心对称,根据中心对称的点的坐标特征进行求解即可【详解】解:∵菱形是中心对称图形,菱形ABCD的对角线交于原点O,∴与点关于原点中心对称,点B的坐标为,点D的坐标是故选A【点睛】本题考查了菱形的性质,求关于原点中心对称的点的坐标,掌握菱形的性质是解题的关键.7、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是中心对称图形,不是轴对称图形,故此选项不符合题意;D、是中心对称图形,不是轴对称图形,故此选项不符合题意.故选:A.【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.8、C【分析】根据⊙O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案.【详解】解:∵⊙O的半径r=4,且点A到圆心O的距离d=5,∴d>r,∴点A在⊙O外,故选:C.【点睛】本题主要考查点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.二、填空题1、【分析】根据二次函数的性质,对称轴为,进而可得同号,根据列表法即可求得二次函数的对称轴在轴左侧的概率【详解】解:二次函数的对称轴在轴左侧对称轴为,即同号,列表如下共有12种等可能结果,其中同号的结果有4种则二次函数的对称轴在轴左侧的概率为故答案为:【点睛】本题考查了二次函数图象的性质,列表法求概率,掌握二次函数的图象与系数的关系以及列表法求概率是解题的关键.2、【分析】已知扇形的圆心角为,半径为2,代入弧长公式计算.【详解】解:依题意,n=,r=2,∴扇形的弧长=.故答案为:.【点睛】本题考查了弧长公式的运用.关键是熟悉公式:扇形的弧长=.3、2【分析】(1)证明是等边三角形,,进而即可求得;(2)过点作,交于点,以为圆心长度为半径作半圆,交的延长延长线于点,证明在半圆上,进而即可求得范围.【详解】(1)如图,四边形是菱形,是等边三角形是的中点即故答案为:2(2)如图,过点作,交于点,以为圆心长度为半径作半圆,交的延长延长线于点,四边形是菱形,在以为圆心长度为半径的圆上,又∠ABC=α(0°<α<180°)在半圆上,最小值为最大值为故答案为:【点睛】本题考查了相似三角形的性质与判定,点与圆的位置关系求最值问题,掌握相似三角形的性质与判定是解题的关键.4、【分析】根据圆心角为的扇形面积是进行解答即可得.【详解】解:这个扇形的面积.故答案是:.【点睛】本题考查了扇形的面积,解题的关键是掌握扇形的面积公式.5、相切【分析】过点C作CD⊥AB于D,在Rt△ABC中,根据勾股定理AB=cm,利用面积得出CD·AB=AC·BC,即10CD=6×8,求出CD=4.8cm,根据CD=r=4.8cm,得出直线与的位置关系是相切.【详解】解:过点C作CD⊥AB于D,在Rt△ABC中,根据勾股定理AB=cm,∴S△ABC=CD·AB=AC·BC,即10CD=6×8,解得CD=4.8cm,∴CD=r=4.8cm,∴直线与的位置关系是相切.故答案为:相切.【点睛】本题考查勾股定理,直角三角形面积,圆的切判定,掌握勾股定理,直角三角形面积,圆的切判定是解题关键.6、【分析】由与是等腰直角三角形,得到,,根据全等三角形的性质得到,求得在以为直径的圆上,由的外心为,,得到,如图,当时,的值最小,解直角三角形即可得到结论.【详解】解:与是等腰直角三角形,,,在与中,,≌,,,,在以为直径的圆上,的外心为,,,如图,当时,的值最小,,,,,.则的最小值是,故答案为:.【点睛】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键.7、40°度【分析】直接根据圆周角定理即可得出结论.【详解】解:与是同弧所对的圆心角与圆周角,,.故答案为:.【点睛】本题考查的是圆周角定理,解题的关键是熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.三、解答题1、垂径定理,圆周角定理,圆周角定理,(1,),2【分析】根据垂径定理,圆周角定理依次分析解答.【详解】解:如图2,连接BC.作AE⊥OB于E、AF⊥OC于F.∴、(依据是垂径定理)∵,∴(依据是圆周角定理).∵,.∴BC是的直径(依据是圆周角定理).∴,∵,∴A的坐标为(1,),的半径为2,故答案为:垂径定理,圆周角定理,圆周角定理,(1,),2.【点睛】此题考查了圆的知识,垂径定理、圆周角定理,熟记各定理知识并综合应用是解题的关键.2、(1)见详解;(2)【分析】(1)由题意及垂径定理可知AC垂直平分BD,进而问题可求解;(2)由题意易得,然后由(1)可知△ABD是等边三角形,进而问题可求解.【详解】(1)证明:∵AC是直径,点C是劣弧BD的中点,∴AC垂直平分BD,∴;(2)解:∵,,∴,∵,∴△ABD是等边三角形,∵,∴.【点睛】本题主要考查垂径定理、等边三角形的性质与判定及圆周角定理,熟练掌握垂径定理、等边三角形的性质与判定及圆周角定理是解题的关键.3、(1)见解析(2)见解析【分析】(1)根据轴对称图形,中心对称图形的性质画出图形即可.(2)根据中心对称图形的定义画出图形即可.(1)解:图形如图①②所示.(2)解:图形如图③所示,点P即为所求作.【点睛】本题考查利用旋转变换设计图案,正方形的性质,轴对称图形,中心对称图形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.4、(1)见解析;(2)【分析】(1)连接OD,由AD∥OC及OD=OA,即可得到∠COB=∠DOC,从而可证得△OBC≌△ODC,即可证得CD是⊙O的切线;(2)由AD∥OC可得△EAD∽△EOC,可得,再由△OBC≌△ODC得BC=CD,从而可得,则可求得OC的长.【详解】(1)连接OD,∵,∴.又∵,∴,∴.在与中,∴,∴.又∵,∴,∴是的切线.(2)∵,∴,∴,∴.又∵,∴,∴,∴,∴,∴,∴OC=15【点睛】本题是圆的综合,它考查了切线的判定,三角形全等的判定与性质,相似三角形的判定与性质等知识;证明圆的切线时,往往作半径.5、(1);(2)李老师和王老师被分配到同一个监督岗的概率为.【分析】(1)直接利用概率公式计算;(2)画树状图展示所有16种等可能的结果,找出李老师和王老师被分配到同一个监督岗的结果数,然后根据概率公式计算.【详解】解:(1)因为设立了四个“服务监督岗”:“洗手监督岗”,“戴口罩监督岗”,“戴口罩监督岗”,“就餐监督岗”而“操场活动监督岗”是其中之一,∴王老师被分配到“就餐监督岗”的概率=;故答案为:;(2)画树状图为:由树状图可知共有16种等可能的结果,其中李老师和王老师被分配到同一个监督岗的结果数为4,∴李老师和王老师被分配到同一个监督岗的概率==.【点睛】本题考查了列举法求解概率,列表法与树状图法求解概率:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.6、(1)C(2)(3)【分析】(1)作出图形,根据切线的定义
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国通话系统项目投资可行性研究报告
- 承重粉煤灰多孔砖行业深度研究报告
- 掩门矮柜行业深度研究报告
- 奔驰涨紧轮行业深度研究报告
- 团队沟通与协作高效工具指南
- 卧式自粘机行业深度研究报告
- 黄松木木纹软片行业深度研究报告
- 中国标准电感组项目投资可行性研究报告
- 警察攻楼考试题目及答案
- 2026年亚健康检测仪市场环境分析
- 2025届绵阳一诊 生物试卷
- 《晴隆县红寨煤业有限责任公司晴隆县中营镇红寨煤矿(变更)矿产资源绿色开发利用方案(三合一)》评审意见
- 电子公司塑料电镀件IQC作业指导书
- 食堂送餐合同
- 《新能源乘用车二手车鉴定评估技术规范 第1部分:纯电动》
- 2025年东莞望牛墩镇事业单位招考(10人)高频重点提升(共500题)附带答案详解
- 学校网络安全工作领导小组及职责
- 电力设备交接和预防性试验规程
- 浙江省杭州地区(含周边)重点中学2024-2025学年高一上学期11月期中考试英语试题 含解析
- 安徽省卓越县中联盟2024-2025学年高三上学期11月期中考试语文试卷(含答案)
- GB/T 12996-2024电动轮椅车
评论
0/150
提交评论