




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
青岛版8年级数学下册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、甲、乙两人沿同一条笔直的公路相向而行,甲从地前往地,乙从地前往地.甲先出发3分钟后乙才出发.当甲行驶到6分钟时发现重要物品忘带,立刻以原速的掉头返回地.拿到物品后以提速后的速度继续前往地,二人相距的路程(米)与甲出发的时间(分钟)之间的关系如图所示,下列说法不正确的是(
)A.乙的速度为 B.两人第一次相遇的时间是分钟C.点的坐标为 D.甲最终达到地的时间是分钟2、如图,在矩形纸片中,,,点是边上的一点,将沿所在的直线折叠,使点落在上的点处,则的长是(
)A.2 B.3 C.4 D.53、如图所示,一次函数的图象经过点,则方程的解是(
)A. B. C. D.无法确定4、不等式组x+3>1−3x≥−3A. B.C. D.5、下列命题为真命题的是(
)A.内错角相等,两直线平行 B.是最简二次根式C.1的平方根是1 D.一般而言,一组数据的方差越大,这组数据就越稳定6、在实数、3、0、中,最小的数是(
)A. B.3 C.0 D.7、已知点M(a,b)在第二象限内,且,则该点关于原点对称点的坐标是(
)A.(-2,1) B.(-1,2) C.(2,-1) D.(1,-2)8、在平面直角坐标系中,坐标原点O是线段AB的中点,若点A的坐标为(﹣1,2),则点B的坐标为(
)A.(2,﹣1) B.(﹣1,﹣2) C.(1,﹣2) D.(﹣2,1)第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,已知正方形ABCD的边长为5,对角线AC,BD交于点O,点E为BC边上一点,连接DE,取DE的中点F,连接OF,CF.若OF=1.5,则点O到CF的距离为____.2、已知直角三角形的两边长为3和4,则直角三角形的面积为______.3、如图是小明的身高随年龄变化的图像,那么小明自16岁到18岁这两年间身高一共增高了约___________cm.4、在Rt△ABC中,∠ACB=90°,AC=6,BC=8.(1)如图1,D、E分别是AB和CB边上的点,把△BDE沿直线DE折叠,若点B落在AC边上的点F处,则CE的最小值是_______;(2)如图2,CG是AB边上的中线,将△ACG沿CG翻折后得到△HCG,连接BH,则BH的长为______.5、如图①,在△ABC中,∠ACB=90°,∠A=30°,点C沿BE折叠与AB上的点D重合,连接DE,请你探究:______;请在这一结论的基础上继续思考:如图②,在△OPM中,∠OPM=90°∠M=30°,若OM=2,点G是OM边上的动点,则的最小值为______.6、点(—3,—4)关于原点对称的点坐标是____.7、计算:()×=___.三、解答题(7小题,每小题10分,共计70分)1、如图,直线y=与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B′处.(1)求:点B′的坐标;(2)求:直线AM所对应的函数关系式.2、如图是直角三角尺()和等腰直角三角尺()放置在同一平面内,斜边BC重合在一起,,,.交AB于点E;作交AC的延长线于点F.(1)求证:四边形AEDF是正方形.(2)当时,求正方形AEDF的边长.3、设一次函数的图象为,一次函数的图象为直线,若,且,我们就称直线与直线互相平行.解答下面的问题:(1)求过点且与已知直线平行的直线的函数表达式,并画出直线的图象;(2)设(1)中的直线分别与轴、轴交于、两点,直线分别与轴、轴交于、两点,求四边形的面积.4、某学校为进一步做好疫情防控工作,计划购进A,B两种口罩.已知每箱A种口罩比每箱B种口罩多10包,每箱A种口罩和每箱B种口罩的价格分别是630元和600元,而每包A种口罩和每包B种口罩的价格分别是这一批口罩平均每包价格的0.9倍和1.2倍.(1)求这一批口罩平均每包的价格是多少元.(2)如果购进A,B两种口罩共5500包,最多购进3500包A种口罩,为了使总费用最低,应购进A种口罩和B种口罩各多少包?总费用最低是多少元?5、在平面直角坐标系中,将两块分别含45°和30°的直角三角板按如图放置(∠C=30°,AC=2AB),BC=.(1)点A坐标为____________,点B坐标为______________,点C坐标为________________;(2)平面内存在点D(与点A不重合),使得△DBC与△ABC全等,请你直接写出点D的坐标.6、如图所示,一桥洞的上边是半圆,下边是长方形.已知半圆的直径为2m,长方形的另一边是1m,有一辆厢式小货车,高1.5米,宽1.6米,这辆小货车能否通过此桥洞?通过计算说明理由.7、下面是某数学兴趣小组探究用不同方法作线段AB的垂直平分线的讨论片段,请仔细阅读,并完成相应任务,(1)分别以点A,B为圆心,大于AB的长为半径作弧,两弧在上方交于点,连接CA,CB;(2)以点C为圆心,适当长为半径作弧,分别交边AC,于点,E;(3)分别作线段CD,CE的垂直平分线,两线交于点P;(4)作直线CP.直线CP即为线段AB的垂直平分线.简述理由如下:连接PD,PE,由作图知,PD=PC=PE,所以△PCD≌△PCE,则,即射线CP是∠ACB的平分线∵CA=CB,∴CP⊥AB,且平分线段,∴直线CP是线段AB的垂直平分线.小军:我认为小明的作图方法很有创意,但是太麻烦了,可以改进如下:如图(2),(1)分别以点A,B为圆心,大于AB的长为半径作弧,两弧在上方交于点,作射线CA,CB;(2)以点C为圆心,适当长为半径作弧,分别交射线CA,CB,于点,E;(3)连接BD,AE,交于点Q;(4)作直线CQ.直线CQ即为线段AB的垂直平分线.任务:(1)小明得出△PCD≌△PCE的依据是.(填序号)①SSS
②SAS
③AAS
④ASA
⑤HL(2)小军作图得到的直线CQ是线段AB的垂直平分线吗?请判断,并说明理由;(3)如图(3),在等腰三角形ABC中,CA=CB,,∠CAB=75°,点D,分别是射线,CB上的动点,且CD=CE,连接,AE,交点为点P.当∠PAB=45°时,直接写出线段的长.-参考答案-一、单选题1、D【解析】【分析】甲出发3分钟后乙才出发,则AB段表示甲先出发3分钟内两人距离与甲出发时间的关系,故可得B点横坐标为3;BC段表示甲3分钟~6分钟内两人的距离与甲出发时间的关系,故可得点C横坐标为6;CD段两人距离不变,表示两人的速度相等,从而可得乙的速度为甲原来速度的,利用前6分钟的路程等于返回取物品的路程,可求得D点的横坐标,再利用相遇关系可求得第一次相遇的时间,从而也可求得甲最终达到B地的时间,从而确定答案.【详解】由题意知:AB段表示甲先出发3分钟内两人距离与甲出发时间的关系,则;BC段表示甲3分钟~6分钟内两人的距离与甲出发时间的关系,故;CD段两人距离不变,表示两人的速度相等,从而可得乙的速度为甲原来速度的;设甲原来的速度为,提速后的速度为,则乙的速度为甲行驶6分钟后,乙行驶3分钟,两人相距2320米,于是两人共行驶了4000−2320=1680()则得方程:解得:则乙的速度为故A正确甲前3分钟的路程为:3×160=480(),3分钟时甲乙相距故点B的坐标为故C正确设甲6分钟后返回的时间为根据甲6分钟的路程=甲返回取回物品的路程,得方程:解得:t=4∴即10后,甲乙均以速度相向而行,此时两人相距:,两人相遇的时间为:所以甲出发到两人第一次相遇时间为:故B正确甲拿回物品后到达B地需要的时间为:,则甲最终达到B地所需的时间为:故D错误故选:D【点睛】本题考查了函数图象,行程中的相遇问题,解一元一次方程,读懂函数图象并从图象中获取信息,分析运动过程是解答本题的关键和难点.2、B【解析】【分析】根据折叠的性质可得,再由矩形的性质可得,从而得到,然后设,则,在中,由勾股定理,即可求解.【详解】解:根据题意得:,在矩形纸片中,,∴,∴,设,则,在中,,∴,解得:,即.故选:B【点睛】本题主要考查了矩形与折叠,勾股定理,熟练掌握矩形的性质,折叠图形的性质是解题的关键.3、C【解析】【分析】将点代入直线解析式,然后与方程对比即可得出方程的解.【详解】解:一次函数的图象经过点,∴,∴为方程的解,故选:C.【点睛】题目主要考查一次函数与一元一次方程的联系,理解二者联系是解题关键.4、B【解析】【分析】先分别求出各不等式的解集,再求其公共解集即可.【详解】解:,由①得x>﹣2,由②得x≤1,不等式组的解集为﹣2<x≤1.故选:B.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5、A【解析】【分析】根据平行线的判定,最简二次根式,平方根的性质,方差的意义,逐项判断即可求解.【详解】解:A、内错角相等,两直线平行,原命题是真命题,故本选项符合题意;B、被开方数中有分母不是最简二次根式,原命题是假命题,故本选项不符合题意;C、1的平方根是,原命题是假命题,故本选项不符合题意;D、一般而言,一组数据的方差越大,这组数据就越不稳定,原命题是假命题,故本选项不符合题意;【点睛】本题主要考查了平行线的判定,最简二次根式,平方根的性质,方差的意义,真假命题的判定,熟练掌握平行线的判定,最简二次根式,平方根的性质,方差的意义是解题的关键.6、A【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:由题意可得:故最小的数是故选:A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.7、D【解析】【分析】根据M点所在的象限及两坐标的绝对值可确定点M的坐标,再根据两个点关于原点对称的坐标特征:横坐标、纵坐标分别互为相反数,即可确定答案.【详解】∵M点在第二象限∴a<0,b>0∵∴a=−1,b=2即M(−1,2)所以M点关于原点对称的点的坐标为(1,−2)故选:D【点睛】本题考查了两点关于原点对称的坐标特征,点所在象限的坐标特征,掌握这两个特征是解题的关键.8、C【解析】【分析】因为坐标原点O是线段AB的中点,所以AB两点关于原点对称.根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:∵坐标原点O是线段AB的中点,∴AB两点关于原点对称,∵点A的坐标为(﹣1,2),∴点B的坐标为(1,-2)故选:C【点睛】本题考查了关于原点对称点的性质.解题的关键是知道关于原点对称点的横坐标互为相反数,纵坐标也互为相反数.二、填空题1、【解析】【分析】根据正方形的性质得到CD=BC=5,BO=DO,∠DBC=45°,AC⊥BD,求得∠DOC=90°,OC=CD=,根据三角形的中位线定理得到OF=BE,OF∥BE,求得BE=3,根据直角三角形斜边上的中线等于斜边的一半得到CF=DE=,过F作FH⊥OC于H,则△OFH是等腰直角三角形,设点O到CF的距离为x,根据三角形的面积公式即可得到答案.【详解】解:∵四边形ABCD是正方形,∴CD=BC=5,BO=DO,∠DBC=45°,AC⊥BD,∴∠DOC=90°,OC=CD=,∵点F是DE的中点,BO=DO,∴OF=BE,OF∥BE,∴∠DOF=∠DBC=45°,∴∠FOC=45°,∵OF=1.5,∴BE=3,∴CE=5﹣3=2,∴DE===,∴CF=DE=,过F作FH⊥OC于H,则△OFH是等腰直角三角形,∴FH=OF=,设点O到CF的距离为x,∵S△COF=OC•FH=CF•x,∴,∴,∴点O到CF的距离为,故答案为:.【点睛】本题考查了正方形的性质,勾股定理,等腰直角三角形的判定和性质,三角形的中位线定理,三角形面积公式等知识,正确的作出辅助线是解题的关键.2、6或【解析】【分析】利用分类讨论:长度为4的边为直角边时和长度为4的边为斜边时,根据三角形面积公式和勾股定理即可求解.【详解】分类讨论:①当长度为4的边为直角边时,那么长度为3的边即是另一条直角边,∴这个三角形的面积为;②当长度为4的边为斜边时,那么长度为3的边即为一条直角边,根据勾股定理可知另一条直角边的长度为,∴这个三角形的面积为.故答案为:6或.【点睛】本题主要考查勾股定理,利用分类讨论的思想是解答本题的关键.3、【解析】【分析】先求解时对应的一次函数的解析式,可得时的函数值,再求解时对应的函数解析式,可得时的函数值,从而可得答案.【详解】解:当时,设函数解析式为:解得:所以一次函数为:当时,当时,设函数解析式为:所以一次函数的解析式为:当时,(cm),故答案为:15【点睛】本题考查的是利用待定系数法求解一次函数的解析式,已知自变量的值求解函数值,掌握“待定系数法求解解析式的步骤”是解本题的关键.4、
【解析】【分析】(1)当点B与点A重合时,CE最小,设CE=x,由勾股定理得,代入数值求出x值即可;(2)根据勾股定理求出AB,利用中线的性质得到CG=AG,过点G作GD⊥AC于D,由翻折得,求出EH,过点G作GF⊥BH,证明四边形GEHF是矩形,得到GF=EH,勾股定理求出BF,由BH=2BF求出答案.【详解】解:(1)当点B与点A重合时,CE最小,如图,设CE=x,则BE=8-x,由折叠得AE=BE=8-x,∵∠ACB=90°,,∴,解得x=,即CE的最小值是,(2)∵在Rt△ABC中,∠ACB=90°,AC=6,BC=8.∴,∵CG是AB边上的中线,∴,AG=BG=5,∴CG=AG,过点G作GD⊥AC于D,则,∴DG=4,由翻折得,∴,∴,得,过点G作GF⊥BH,∵GH=AG=BG,∴FH=BF,∠HGF=∠BGF,∵∠AGC=∠HGC,∴∠CGF=90°=∠GEH=∠GFH,∴四边形GEHF是矩形,∴GF=,∴∴BH=2BF=.故答案为:,.【点睛】此题考查了翻折的性质,勾股定理的应用,等腰三角形三线合一的性质,矩形的判定定理及性质定理,直角三角形斜边中线的性质,熟记各知识点并应用是解题的关键.5、
【解析】【分析】①根据直角三角形及折叠的性质可得,,,,由等角对等边及等腰三角形的性质可得,,利用线段间的数量关系进行等量代换即可得;②作射线MB,使得,过点G作,过点P作交于点C,连接PB,利用勾股定理可得,,由含角的直角三角形的性质可得,根据题意得出最小值即为的最小值,即当P、G、B三点共线时,PC的长度,在中,利用勾股定理求解即可得出PC的长度,即为最小值.【详解】解:①∵,∴,∵点C沿BE折叠与AB上的点D重合,∴,∴,,,∴,∴,,∴,∴,即;②如图所示:作射线MB,使得,过点G作,过点P作交于点C,连接PB,在中,,,∴,,∵,,∴,∴,即当P、G、B三点共线时,取得最小值,在中,∵,,,∴,∴,,∴的最小值为;故答案为:①;②.【点睛】题目主要考查折叠的性质及等腰三角形的判定和性质,勾股定理,含角的直角三角形的性质等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.6、(3,4)【解析】【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,据此分析即可.【详解】解:点(—3,—4)关于原点对称的点坐标是(3,4)故答案为:(3,4)【点睛】本题考查了原点对称的两个点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.7、9【解析】【分析】先化简括号内的式子,然后根据乘法分配律计算即可.【详解】解:(﹣)×=(2﹣)×=2×﹣×=12﹣3=9,故答案为:9.【点睛】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的去处法则.三、解答题1、(1)B′的坐标为(2,0)(2)直线AM所对应的函数关系式为【解析】【分析】(1)根据题意先确定点A、点B的坐标,再由AB=AB',可得AB'的长度,求出OB'的长度,即可得出点B'的坐标;(2)由题意设OM=m,则B'M=BM=4-m,在Rt△OMB'中利用勾股定理求出m的值,得出M的坐标后,进而利用待定系数法可求出AM所对应的函数解析式.(1)解:(1)直线y=与x轴、y轴分别相交于点A、B,令x=0,则y=4,令y=0,则x=-3,∴A(-3,0),B(0,4),∴OA=3,OB=4,AB=,∵AB'=AB=5,∴OB'=AB′-AO=5﹣3=2,∴B'的坐标为:(2,0).(2)解:设OM=m,则B'M=BM=4﹣m,在Rt△OMB'中,m2+22=(4﹣m)2,解得:m=,∴M的坐标为:(0,),设直线AM的解析式为y=kx+b,则,解得:,故直线AM的解析式为:y=.【点睛】本题考查一次函数的综合,涉及了待定系数法求函数解析式、勾股定理及翻折变换的性质,拓展的一元一次方程,解答本题的关键是数形结合思想的应用.2、(1)证明见解析(2)正方形AEDF的边长是【解析】【分析】(1)由题意知,,可知四边形AEDF是矩形,,可得,进而可说明四边形AEDF是正方形.(2)解:由题意得,,设,可得,求出的值,根据正方形的边长是计算求解即可.(1)证明:∵,∴∵∴四边形AEDF是矩形∵∴在和中∴∴四边形AEDF是正方形.(2)解:∵,,∴,设得解得:∴正方形AEDF的边长是.【点睛】本题考查了正方形的判定与性质,三角形全等,含30°的直角三角形中边的数量关系.解题的关键在于熟练掌握正方形的判定与性质.3、(1),见解析;(2)【解析】【分析】(1)当两个一次函数的比例系数相等时,两函数图象平行,据此可得到直线的比例系数的值,然后利用告诉的经过的一点的坐标,求函数的表达式,再画出直线即可;(2)将两直线与坐标轴围成的四边形的面积转化为两个三角形面积的和来求.(1)直线与直线平行,设直线的解析式为,过点,,解得:,直线的解析式为:.(2)令,得,令,得,点的坐标为,,点的坐标为,令,得,令,得,点的坐标,点的坐标为,【点睛】本题考查了一次函数的相关知识,特别是求一次函数与两直线的交点坐标,进而求相关图形的面积,更是一个经久不衰的老考点4、(1)20元(2)购进A种口罩3500包,B种口罩2000包时,能使总费用最低,总费用最低是111000元.【解析】【分析】(1)设这一批口罩平均每包的价格是x元,根据“每箱A种口罩比每箱B种口罩多10包,每箱A种口罩和每箱B种口罩的价格分别是630元和600元,而每包A种口罩和每包B种口罩的价格分别是这一批口罩平均每包价格的0.9倍和1.2倍”列分式方程解答即可;(2)设购进A种口罩t包,这批口罩的总费用为w元,根据题意得出w与t的函数关系式,再根据t的取值范围以及一次函数的性质解答即可.(1)解:设这一批口罩平均每包的价格是x元,根据题意得:,解得x=20,经检验,x=20是原方程的解,并符合题意,答:这一批口罩平均每包的价格是20元;(2)解:由(1)可知,A种口罩每包价格为20×0.9=18(元),B种口罩每包价格为20×1.2=24(元),设购进A种口罩t包,这批口罩的总费用为w元,根据题意得:w=18t+24(5500﹣t)=﹣6t+132000,∵w是t的一次函数,k=﹣6<0,∴w随t的增大而减小,由∵t≤3500,∴当t=3500时,w最小,此时B种口罩有:5500﹣3500=2000(包),w=﹣6×3500+132000=111000,答:购进A种口罩3500包,B种口罩2000包时,能使总费用最低,总费用最低是111000元.【点睛】此题主要考查了分式方程的应用,一次函数的应用,正确得出等量关系是解题关键.5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国橡胶粉改性沥青项目商业计划书
- 中国聚甘油脂肪酯项目投资计划书
- 2025年云南省时事政治考试试卷带解析含完整答案(有一套)
- 中国聚酰胺热熔胶项目投资计划书
- 中国甲氧胺盐酸盐项目商业计划书
- 阳泉市人民医院老年医学信息化考核
- 通辽市人民医院学科带头人任职资格认证
- 赤峰市人民医院科室业务学习考核
- 唐山市中医院3D腹腔镜技术应用考核
- 伊春市人民医院平衡功能检查考核
- 10.5带电粒子在电场中的运动(第1课时加速)课件-高二上学期物理人教版
- 《旅游线路设计》课程标准
- 紫外线吸收剂市场分析报告
- TOE框架下我国基层治理创新的路径研究-基于49个案例的模糊集定性比较分析
- 采购员考试题及答案
- 三维动画试题及答案
- 糖尿病酮症酸中毒护理疑难病历讨论
- T/CSMT-YB 006-2023精密数字温度计性能测试与评价方法
- 冷链设施设备验证与校准培训课件
- 2024年三年级英语上册全册教案外研版
- SF6设备带压封堵技术规范2023
评论
0/150
提交评论